Advertisement

Siberian Mathematical Journal

, Volume 48, Issue 3, pp 559–569 | Cite as

Boundedness and compactness of an integral operator in a mixed norm space on the polydisk

  • S. Stević
Article

Abstract

We study the following integral type operator
$$T_g (f)(z) = \int\limits_0^{z_{} } { \cdots \int\limits_0^{z_n } {f(\zeta _1 , \ldots ,\zeta _n )} g(\zeta _1 , \ldots ,\zeta _n )d\zeta _1 , \ldots ,\zeta _n } $$
in the space of analytic functions on the unit polydisk U n in the complex vector space ℂn. We show that the operator is bounded in the mixed norm space
, with p, q ∈ [1, ∞) and α = (α1, …, αn), such that αj > −1, for every j = 1, …, n, if and only if \(\sup _{z \in U^n } \prod\nolimits_{j = 1}^n {\left( {1 - \left| {z_j } \right|} \right)} \left| {g(z)} \right| < \infty \). Also, we prove that the operator is compact if and only if \(\lim _{z \to \partial U^n } \prod\nolimits_{j = 1}^n {\left( {1 - \left| {z_j } \right|} \right)} \left| {g(z)} \right| = 0\).

Keywords

analytic function mixed norm space integral operator polydisk boundedness compactness 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pommerenke Ch., “Schlichte Funktionen und analytische Funktionen von beschrankter mittlerer Oszillation,” Comment. Math. Helv., 52, 591–602 (1977).MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Aleman A. and Siskakis A., “An integral operator on H p,” Complex Variables, 28, 149–158 (1995).MATHMathSciNetGoogle Scholar
  3. 3.
    Aleman A. and Siskakis A., “Integration operators on Bergman spaces,” Indiana Univ. Math. J., 46, 337–356 (1997).MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Chang D. C. and Stević S., “The generalized Cesàro operator on the unit polydisk, ” Taiwanese J. Math., 7, No. 2, 293–308 (2003).MATHMathSciNetGoogle Scholar
  5. 5.
    Kriete T. L. and MacCluer B. D., “Composition operators on large weighted Bergman spaces,” Indiana Univ. Math. J., 41, 755–788 (1992).MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Lin P. and Rochberg R., “Hankel operators on the weighted Bergman spaces with exponential type weights,” Integral Equations Operator Theory, 21, No. 4, 460–483 (1995).MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Siskakis A., “Weighted integrals of analytic functions,” Acta Sci. Math., 66, 651–664 (2000).MATHMathSciNetGoogle Scholar
  8. 8.
    Stević S., “On an area inequality and weighted integrals of analytic functions,” Result. Math., 41, 386–393 (2002).MATHGoogle Scholar
  9. 9.
    Stević S., “Composition operators on the generalized Bergman space,” J. Indian Math. Soc., 69, 61–64 (2002).MathSciNetMATHGoogle Scholar
  10. 10.
    Chang D. C. and Stević S., “Estimates of an integral operator on function spaces,” Taiwanese J. Math., 7, No. 3, 423–432 (2003).MATHMathSciNetGoogle Scholar
  11. 11.
    Danikas N. and Siskakis A., “The Cesàro operator on bounded analytic functions,” Analysis, 13, 195–199 (1993).MathSciNetGoogle Scholar
  12. 12.
    Giang D. V. and Móricz F., “The Cesàro operator is bounded on the Hardy space H1,” Acta Sci. Math., 61, 535–544 (1995).MATHGoogle Scholar
  13. 13.
    Hardy G. H., “Notes on some points in the integral calculus LXVI,” Messenger of Math., 58, 50–52 (1929).Google Scholar
  14. 14.
    Miao J., “The Cesàro operator is bounded on H p for 0 < p < 1,” Proc. Amer. Math. Soc., 116, No. 4, 1077–1079 (1992).MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Siskakis A., “Composition semigroups and the Cesàro operator on H p(D),” J. London Math. Soc., 36, 153–164 (1987).MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Siskakis A., “Semigroups of composition operators in Bergman spaces,” Bull. Austral. Math. Soc., 35, 397–406 (1987).MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    Siskakis A., “The Cesàro operator is bounded on H 1,” Proc. Amer. Math. Soc., 110, No. 2, 461–462 (1990).MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Siskakis A., “On the Bergman space norm of the Cesàro operator,” Arch. Math., 67, 312–318 (1996).CrossRefMathSciNetGoogle Scholar
  19. 19.
    Stempak K., “Cesàro averaging operators,” Proc. Roy. Soc. Edinburgh Sect. A, 124, No. 1, 121–126 (1994).MATHMathSciNetGoogle Scholar
  20. 20.
    Stević S., “The generalized Cesàro operator on Dirichlet spaces,” Studia Sci. Math. Hungar., 40, No. 1–2, 83–94 (2003).MathSciNetMATHGoogle Scholar
  21. 21.
    Stević S., “A note on the generalized Cesàro operator on Bergman spaces,” Indian J. Math., 46, No. 1, 129–136 (2004).MathSciNetMATHGoogle Scholar
  22. 22.
    Xiao J., “Cesàro-type operators on Hardy, BMOA and Bloch spaces,” Arch. Math., 68, 398–406 (1997).MATHCrossRefGoogle Scholar
  23. 23.
    Stević S., “Cesàro averaging operators,” Math. Nachr., 248–249, 1–5 (2003).Google Scholar
  24. 24.
    Stević S., “The generalized Libera transform on Hardy, Bergman and Bloch spaces on the unit polydisc,” Z. Anal. Anwendungen., 22, No. 1, 179–186 (2003).MathSciNetMATHGoogle Scholar
  25. 25.
    Hardy G. H. and Littlewood J. E., “Some properties of fractional integrals. II,” Math. Z., 34, 403–439 (1932).CrossRefMathSciNetGoogle Scholar
  26. 26.
    Stević S., “Weighted integrals of holomorphic functions on the polydisc,” Z. Anal. Anwendungen., 23, No. 4, 775–782 (2004).MathSciNetMATHGoogle Scholar
  27. 27.
    Duren P., Theory of H p Spaces, Acad. Press, New York (1970).MATHGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • S. Stević
    • 1
  1. 1.Mathematical Institute of the Serbian Academy of SciencesBeogradSerbia

Personalised recommendations