Siberian Mathematical Journal

, Volume 46, Issue 4, pp 593–600 | Cite as

On Recognition by Spectrum of Finite Simple Linear Groups over Fields of Characteristic 2

  • A. V. Vasil’ev
  • M. A. Grechkoseeva
Article

Abstract

A finite group G is said to be recognizable by spectrum, i.e., by the set of element orders, if every finite group H having the same spectrum as G is isomorphic to G. We prove that the simple linear groups L n (2k) are recognizable by spectrum for n = 2m ≥ 32.

Keywords

finite group finite simple group linear group spectrum of a group recognition by spectrum prime graph 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mazurov V. D., “Characterizations of groups by arithmetic properties,” Algebra Colloq., 11, No.1, 129–140 (2004).MathSciNetGoogle Scholar
  2. 2.
    Vasil’ev A. V., “On connection between the structure of a finite group and the properties of its prime graph,” Siberian Math. J., 46, No.3, 396–404 (2005).CrossRefGoogle Scholar
  3. 3.
    Alekseeva O. A. and Kondrat’ev A. S., “On recognition of the group E 8(q) by the set of element orders,” Ukrain. Math. J., 54, No.7, 1200–1206 (2002).CrossRefGoogle Scholar
  4. 4.
    Vasil’ev A. V. and Vdovin E. P., An Adjacency Criterion for Two Vertices of the Prime Graph of a Finite Simple Group [Preprint, No. 152], Sobolev Institute of Mathematics, Novosibirsk (2005).Google Scholar
  5. 5.
    Zsigmondy K., “Zur Theorie der Potenzreste,” Monatsh. Math. Phys., Bd 3, 265–284 (1892).CrossRefGoogle Scholar
  6. 6.
    Mazurov V. D., “Characterization of finite groups by sets of element orders,” Algebra and Logic, 36, No.1, 23–32 (1997).Google Scholar
  7. 7.
    Carter R. W., “Centralizers of semisimple elements in the finite classical group,” Proc. London Math. Soc. (3), 42, No.1, 1–41 (1981).Google Scholar
  8. 8.
    Testerman D. M., “A 1-type overgroups of elements of order p in semisimple algebraic groups and the associated finite groups,” J. Algebra, 177, No.1, 34–76 (1995).CrossRefGoogle Scholar
  9. 9.
    Carter R. W., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters, John Wiley & Sons, New York (1985).Google Scholar
  10. 10.
    Steinberg R., Endomorphisms of Algebraic Groups, Amer. Math. Soc., Providence RI (1986). (Mem. Amer. Math. Soc.; 80.)Google Scholar
  11. 11.
    Zavarnitsine A. V., Element Orders in Coverings of the Groups L n(q) and Recognition of the Alternating Group A 16 [Preprint, No. 48], NII Diskret. Mat. Inform., Novosibirsk (2000).Google Scholar
  12. 12.
    Carter R. W., Simple Groups of Lie Type, John Wiley & Sons, London (1972).Google Scholar
  13. 13.
    Aschbacher M. and Seitz G. M., “Involutions in Chevalley groups over fields of even order,” Nagoya Math. J., 63, 1–91 (1976).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • A. V. Vasil’ev
    • 1
  • M. A. Grechkoseeva
    • 1
  1. 1.Sobolev Institute of MathematicsNovosibirskRussia

Personalised recommendations