Siberian Mathematical Journal

, Volume 46, Issue 2, pp 293–304 | Cite as

On error estimates in the Galerkin method for hyperbolic equations

  • S. E. Zhelezovskii
Article

Abstract

We consider the Cauchy problem in a Hilbert space for a second-order abstract quasilinear hyperbolic equation with variable operator coefficients and nonsmooth (but Bochner integrable) free term. For this problem, we establish an a priori energy error estimate for the semidiscrete Galerkin method with an arbitrary choice of projection subspaces. Also, we establish some results on existence and uniqueness of an exact weak solution. We give an explicit error estimate for the finite element method and the Galerkin method in Mikhlin form.

Keywords

second-order hyperbolic equation the Galerkin method error estimate weak solution existence and uniqueness of a solution finite element method 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mikhlin S. G., “A remark on the Ritz method,” Dokl. Akad. Nauk SSSR, 106, No.3, 391–394 (1956).Google Scholar
  2. 2.
    Vorovich I. I., “On some direct methods in the nonlinear theory of oscillations of shallow shells,” Izv. Akad. Nauk SSSR Ser. Mat., 21, No.6, 747–784 (1957).Google Scholar
  3. 3.
    Lions J.-L., Some Methods for Solving Nonlinear Boundary Value Problems [Russian translation], Mir, Moscow (1972).Google Scholar
  4. 4.
    Lions J.-L. and Magenes E., Inhomogeneous Boundary Value Problems and Their Applications [Russian translation], Mir, Moscow (1971).Google Scholar
  5. 5.
    Ladyzhenskaya O. A., Boundary Value Problems of Mathematical Physics [in Russian], Nauka, Moscow (1973).Google Scholar
  6. 6.
    Zhelezovskaya L. A., Zhelezovski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) S. E., Kirichenko V. F., and Krys’ko V. A., “Convergence rate of the Bubnov-Galerkin method for hyperbolic equations,” Differentsial’nye Uravneniya, 26, No.2, 323–333 (1990).Google Scholar
  7. 7.
    Zhelezovski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) S. E., “The Bubnov-Galerkin method for an abstract quasilinear problem on stationary action,” Differentsial’nye Uravneniya, 31, No.7, 1222–1231 (1995).Google Scholar
  8. 8.
    Zhelezovski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) S. E., “Rate of convergence of the Galerkin method for one class of quasilinear evolution problems,” submitted to VINITI on January 8, 1998; No. 24-B98.Google Scholar
  9. 9.
    Strang G. and Fix G. J., An Analysis of the Finite Element Method [Russian translation], Mir, Moscow (1977).Google Scholar
  10. 10.
    Marchuk G. I. and Agoshkov V. I., An Introduction to Projection-Grid Methods [in Russian], Nauka, Moscow (1981).Google Scholar
  11. 11.
    Dendy J. E., Jr., “An analysis of some Galerkin schemes for the solution of nonlinear time-dependent problems,” SIAM J. Numer. Anal., 12, No.4, 541–565 (1975).CrossRefGoogle Scholar
  12. 12.
    Dendy J. E., Jr., “Galerkin’s method for some highly nonlinear problems,” SIAM J. Numer. Anal., 14, No.2, 327–347 (1977).CrossRefGoogle Scholar
  13. 13.
    Geveci T., “On the convergence of Galerkin approximation schemes for second-order hyperbolic equations in energy and negative norms,” Math. Comput., 42, No.166, 393–415 (1984).Google Scholar
  14. 14.
    Kok B. and Geveci T., “The convergence of Galerkin approximation schemes for second-order hyperbolic equations with dissipation,” Math. Comput., 44, No.170, 379–390 (1985).Google Scholar
  15. 15.
    Zlotnik A. A. “Estimates for the rate of convergence of the projection-grid methods for second-order hyperbolic equations,” in: Computational Processes and Systems [in Russian], Nauka, Moscow, 1991, No. 8, pp. 116–167.Google Scholar
  16. 16.
    Zhelezovski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) S. E., “Estimates for the rate of convergence of the Galerkin method for abstract hyperbolic equations,” Mat. Zametki, 69, No.2, 223–234 (2001).Google Scholar
  17. 17.
    Zhelezovski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) S. E. and Bukesova N. N., “The error estimates of the projection method for an abstract quasilinear hyperbolic equation,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 5, 94–96 (1999).Google Scholar
  18. 18.
    Lyashko A. D. and Zhelezovski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) S. E., “Well-posedness of an operator-differential scheme and justification of the Galerkin method for hyperbolic equations,” Sibirsk. Zh. Vychisl. Mat., 3, No.4, 357–368 (2000).Google Scholar
  19. 19.
    Zhelezovski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) S. E. and Lyashko A. D., “The error estimates of the Galerkin method for quasilinear hyperbolic equations,” Differentsial’nye Uravneniya, 37, No.7, 941–949 (2001).Google Scholar
  20. 20.
    Morozov N. F., “Study of oscillations of a prismatic rod under transverse load,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 121–125 (1965).Google Scholar
  21. 21.
    Zhelezovski \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) S. E., “On the existence and uniqueness of a solution and on the convergence rate of the Bubnov-Galerkin method for a quasilinear evolution problem in Hilbert space,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 10, 37–45 (1998).Google Scholar
  22. 22.
    Kre \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) n S. G., Linear Differential Equations in Banach Space [in Russian], Nauka, Moscow (1967).Google Scholar
  23. 23.
    Kolmogorov A. N. and Fomin S. V., Elements of the Theory of Functions and Functional Analysis [in Russian], Nauka, Moscow (1981).Google Scholar
  24. 24.
    Akhiezer N. I., Lectures on Approximation Theory [in Russian], Nauka, Moscow (1965).Google Scholar
  25. 25.
    Beckenbach E. F. and Bellman R., Inequalities [Russian translation], Mir, Moscow (1965).Google Scholar
  26. 26.
    Gajewski H., Gröger K., and Zacharias K., Nonlinear Operator Equations and Operator Differential Equations [Russian translation], Mir, Moscow (1978).Google Scholar
  27. 27.
    Lyusternik L. A. and Sobolev V. I., Elements of Functional Analysis [in Russian], Nauka, Moscow (1965).Google Scholar
  28. 28.
    Ciarlet P. G., The Finite Element Method for Elliptic Problems [Russian translation], Mir, Moscow (1980).Google Scholar
  29. 29.
    Mikhlin S. G., Numerical Realization of Variational Methods [in Russian], Nauka, Moscow (1966).Google Scholar
  30. 30.
    Dzhiskariani A. V., “On rapidity of the convergence of the Bubnov-Galerkin method,” Zh. Vychisl. Mat. i Mat. Fiziki, 4, No.2, 343–348 (1964).Google Scholar
  31. 31.
    Va \(\overset{\lower0.5em\hbox{$\smash{\scriptscriptstyle\smile}$}}{\imath}\) nikko G. M., “Some error estimates of the Bubnov-Galerkin method. I: Asymptotic estimates,” Uchen. Zap. Tartu Univ., No. 150, 188–201 (1964).Google Scholar
  32. 32.
    Zarubin A. G., “Convergence rate of the Faedo-Galerkin method for quasilinear nonstationary operator equations,” Differentsial’nye Uravneniya, 26, No.12, 2051–2059 (1990).Google Scholar
  33. 33.
    Smagin V. V., “The error estimates of semidiscrete approximations by Galerkin for parabolic equations with boundary condition of Neumann type,” Izv. Vyssh. Uchebn. Zaved. Mat., No. 3, 50–57 (1996).Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2005

Authors and Affiliations

  • S. E. Zhelezovskii
    • 1
  1. 1.Saratov State Socio-Economic UniversitySaratov

Personalised recommendations