Advertisement

Structure and isomerization of cyclotrimetallenes

  • 16 Accesses

  • 7 Citations

Abstract

The substituent migration on the X2Y rings (X, Y=C, Si, Ge) was studied by theoretical method with silyl and hydrogen substituents and it was found that all the reactions (with the exception of cyclopropene) proceed in a two-step mechanism via a stable intermediate. The rate determining step of the reaction is the first step. The barrier of the second step is small and the energy of the intermediate is close to that of the reactant. Both the first transition state (T1) and the intermediate (I) are of monobridge structures of different types. Since the intermediate bridge structure is almost as stable as the product, it may be observed in the substituent migration reactions.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

References

  1. 1.

    Sekiguchi, A., Yamazaki, H., Kabuto, C., Sakurai, H. & Nagase, S. 1995 J. Am. Chem. Soc. 117, 8025.

  2. 2.

    (a) Iwamoto, T., Kabuto, C. & Kira, M. 1999 J. Am. Chem. Soc. 121, 886. (b) Ichinohe, M., Matsuno, T. & Sekiguchi, A. 1999 Angew. Chem. Int. Ed. 38, 2194.

  3. 3.

    Wiberg, N., Lerner, H.-W., Vasisht, S.-K., Wagner, S., Karaghiosoff, K., Nöth, H. & Ponikwar, W. 1999 Eur. J. Inorg. Chem. 1211.

  4. 4.

    Lee, V. Ya., Ichinohe, M., Sekiguchi, A., Takagi, N. & Nagase, S. 2000 J. Am. Chem. Soc. 122, 9034.

  5. 5.

    Sekiguchi, A. & Lee, V.Y. 2003 Chem. Rev. 103, 1429.

  6. 6.

    Weidenbruch, M. 2001 The Chemistry of Organic Silicon Compounds, Rappoport, Z. & Apeloig, Y. (Eds.), Vol. 3, Chapter 5, Chichester: Wiley.

  7. 7.

    Naruse, Y., Ma, J. & Inagaki, S. 2001 Tetrahedron Letters 42, 6553.

  8. 8.

    Sekiguchi, A., Ishida, Y., Fukaya, N., Ichinohe, M., Takagi, N. & Nagase, S. 2002 J. Am. Chem. Soc. 124, 1158.

  9. 9.

    Chaouch, S.E., Guillemin, J.-C., Kárpáti, T. & Veszprémi, T. 2001 Organometallics 20, 5405.

  10. 10.

    Gaussian 03, Revision B03, Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Montgomery, Jr., J.A., Vreven, T., Kudin, K.N., Burant, J.C., Millam, J.M., Iyengar, S.S., Tomasi, J., Barone, V., Mennucci, B., Cossi, M., Scalmani, G., Rega, N., Petersson, G.A., Nakatsuji, H., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Klene, M., Li, X., Knox, J.E., Hratchian, H.P., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Ayala, P.Y., Morokuma, K., Voth, G.A., Salvador, P., Dannenberg, J.J., Zakrzewski, V.G., Dapprich, S., Daniels, A.D., Strain, M.C., Farkas, O., Malick, D.K., Rabuck, A.D., Raghavachari, K., Foresman, J.B., Ortiz, J.V., Cui, Q., Baboul, A.G., Clifford, S., Cioslowski, J., Stefanov, B.B., Liu, G., Liashenko, A., Piskorz, P., Komaromi, I., Martin, R.L., Fox, D.J., Keith, T., Al-Laham, M.A., Peng, C.Y., Nanayakkara, A., Challacombe, M., Gill, P.M.W., Johnson, B., Chen, W., Wong, M.W., Gonzalez, C. & Pople, J.A., Gaussian, Inc., Wallingford CT, 2004.

  11. 11.

    (a) Veszprémi, T., Takahashi, M., Ogasawara, J., Sakamoto, K. & Kira, M. 1998 J. Am. Chem. Soc. 120, 2408. (b) Veszprémi, T., Takahashi, M., Hajgató, B. & Kira, M. 2001 J. Am. Chem. Soc. 123, 6629.

  12. 12.

    Kosa, M., Karni, M. & Apeloig, Y. 2006 J. Chem. Theor. Comput. 2, 956.

  13. 13.

    (a) Reed, A.E., Weinstock, R.B. & Weinhold, F. 1985 J. Chem. Phys. 83, 735. (b) Reed, A.E. & Weinhold, F. 1985 J. Chem. Phys. 83, 1736. (c) Reed, A.E., Curtiss, L.A. & Weinhold, F. 1998 Chem. Rev. 88, 899.

  14. 14.

    Biegler-König, F., Schönbohm, J. & Bayles, D, AIM2000 – A program to analyze and visualize atoms in molecules 2001 J. Comp. Chem. 22, 545.

  15. 15.

    The geometry around the X1 = X3 double bond (see Scheme 3) depends on the nature of the metal and the substituents, see Ref. 1,2b, 4. The geometries around the C=C, Si=Si and Si=Ge double bonds were calculated to be planar for A, B and C. For D and E the orientation of double bonds is trans-bent: the substituents move above and below the ring plane by 45 and 51 deg. respectively.

  16. 16.

    Nagase, S., Kobayashi, K. & Takagi, N. 2000 J. Org. Chem. 611, 264.

  17. 17.

    Kira, M., Iwamoto, T. & Kabuto, C. 1996 J. Am. Chem. Soc. 118, 10303.

  18. 18.

    Iwamoto, T., Tamura, M., Kabuto, C. & Kira, M. 2003 Organometallics 22, 2342.

  19. 19.

    Masamune, S., Kabe, Y. & Collins, S. 1985 J. Am. Chem. Soc. 107, 552.

  20. 20.

    Boatz, J.A. & Gordon, M.S. 1988 J. Phys. Chem. 92, 3037.

Download references

Author information

Correspondence to T. Veszprémi.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Veszprémi, T., Olasz, A. & Pintér, B. Structure and isomerization of cyclotrimetallenes. Silicon Chem 3, 187–194 (2007) doi:10.1007/s11201-006-9020-9

Download citation

Key words

  • cyclotrimetallenes
  • bridge structures
  • substituent migration
  • substituent effects