Archaeomagnetic investigations in Bolgar (Tatarstan)

Abstract

The objective of this study is to provide a well-dated point for a future palaeosecular variation (PSV) reference curve for western Russia. For this purpose archaeomagnetic and magnetic property analyses were carried out on a pottery kiln unearthed at the UNESCO World Heritage site of ancient Bolgar, having a rather precise age dating. The archaeological context provided an age between 1340 and 1360 C.E. The characteristic remanence vector was determined through alternating field demagnetisation and Thellier-Thellier palaeointensity experiments. Some innovations were introduced regarding palaeointensity. The check testing the equality of blocking and unblocking temperature was redefined. This allowed waiving the commonly used additional zero-field cooling steps during the Thellier-Thellier experiment. Another innovation concerns the calculation of archaeointensity at structure level. A Bayesian approach was introduced for averaging individual specimen archaeointensities using a prior probability distribution of unknown uncertainties. Next, an additional prior probability distribution was used to correct for cooling rate effects. This resulted in a lower uncertainty compared to common practice and in eluding time consuming cooling rate experiments. The complex magnetic mineralogy consists of maghaemite, multi-domain haematite and Al-substituted haematite. Some samples contained also some non-stoichiometric magnetite. The magnetic mineralogy was determined through hysteresis loops, backfield and remanence decay curves, measurements of the frequency dependence of magnetic susceptibility and through low temperature magnetisation curves. Accompanying high-temperature thermomagnetic analyses revealed an excellent thermo-chemical stability of the studied specimens. Directions obtained from alternating field demagnetisation and those extracted from archaeointensity experiments are congruent and have low uncertainties. The obtained archaeomagnetic results are fairly in agreement with global geomagnetic field models and contemporary PSV data of the wider area. The geomagnetic field vector obtained for ancient Bolgar is of high quality, deserving thus its inclusion in a future PSV reference curve for European Russia.

References

  1. Arneitz P., Egli R. and Leonhardt R., 2017. Unbiased analysis of geomagnetic data sets and comparison of historical data with paleomagnetic and archeomagnetic records. Rev. Geophys., 55, 5–39, DOI: https://doi.org/10.1002/2016RG000527.

    Article  Google Scholar 

  2. Arneitz P., Egli R., Leonhardt R. and Fabian K., 2019. A Bayesian iterative geomagnetic model with universal data input: Self-consistent spherical harmonic evolution for the geomagnetic field over the last 4000 years. Phys. Earth Planet. Inter., 290, 57–75, DOI: https://doi.org/10.1016/j.pepi.2019.03.008.

    Article  Google Scholar 

  3. Batt C.M., 1997. The British archaeomagnetic calibration curve: an objective treatment. Archaeometry, 39, 153–168.

    Article  Google Scholar 

  4. Batt C.M., Brown M.C., Clelland S.-J., Korte M., Linford P. and Outram Z., 2017. Advances in archaeomagnetic dating in Britain: New data, new approaches and a new calibration curve. J. Archaeol. Sci., 85, 66–82, DOI: https://doi.org/10.1016/j.jas.2017.07.002.

    Article  Google Scholar 

  5. Bleil U. and von Dobeneck T., 1999. Geomagnetic events and relative paleointensity records — clues to high-resolution paleomagnetic chronostratigraphies of Late Quaternary marine sediments? In: Fischer G. and Wefer G. (Eds), Use of Proxies in Paleoceanography: Examples from the South Atlantic. Springer-Verlag, Berlin, Germany, 635–654.

    Chapter  Google Scholar 

  6. Brâzda P., Večerníková E., Pližingrová E., Lančok A. and Nižňanský D., 2014. Thermal stability of nanocrystalline ε-Fe2O3. J. Therm. Anal. Calorim., 117, 85–91, DOI: https://doi.org/10.1007/s10973-014-3711-9.

    Article  Google Scholar 

  7. Bronk Ramsey C., 1995. Radiocarbon calibration and analysis of stratigraphy: The OxCal program. Radiocarbon, 37, 425–430, DOI: https://doi.org/10.1017/S0033822200030903.

    Article  Google Scholar 

  8. Brown M.C., Donadini F., Korte M., Nilsson A., Korhonen K., Lodge A., Lengyel S.N. and Constable C.G., 2015. GEOMAGIA50.v3: 1. General structure and modifications to the archeological and volcanic database. Earth Planets Space, 67, 81, DOI: https://doi.org/10.1186/s40623-015-0232-0.

    Article  Google Scholar 

  9. Burakov K., Burlatskaya S., Nachasova I. and Chelidze Z., 1982. Geomagnetic field intensity in the Caucasus though the last 2000 years. Geomagn. Aeron., 22, 523–524 (in Russian).

    Google Scholar 

  10. Burakov K. and Nachasova I., 1986. Geomagnetic field intensity in Georgia through the last 3000 years according to archeomagnetic data. In: IPE AS USSR, The Fine Structure of Geomagnetic Field. Institute of Physics of the Earth, Academy of Sciences of the USSR, Moscow, 26–32 (in Russian).

    Google Scholar 

  11. Burlatskaya S.P., 2002. The geomagnetic field variation pattern over the last 6500 years. Izv.-Phys. Solid Earth, 38, 363–370.

    Google Scholar 

  12. Burlatskaya S.P., Nachasova I.E., Didenko E.J. and Shelestun N.K., 1986. Archeomagnetic Determinations of Geomagnetic Field Elements of the USSR. Soviet Geophysical Committee of the USRR Academy of Sciences, Moscow, Russia, 168 pp.

    Google Scholar 

  13. Burov B.V., Nourgaliev D.K. and Jasonov P.G., 1986. Palaeomagnetic Analysis. Kazan University Press, Kazan, Russia (in Russian).

    Google Scholar 

  14. Calvo-Rathert M., Contreras J.M., Carrancho Á., Camps P., Goguitchaivili A. and Hill J.M., 2019. Reproducibility of archaeointensity determinations with a multimethod approach on archaeological material productions. Geophys. J. Int., 218, 1719–1738.

    Article  Google Scholar 

  15. Casas L. and Incoronato A., 2007. Distribution analysis of errors due to relocation of geomagnetic data using the ‘Conversion via Pole’ (CVP) method: implications on archaeomagnetic data. Geophys. J. Int., 169, 448–454, DOI: https://doi.org/10.1111/j.1365-246X.2007.03346.x.

    Article  Google Scholar 

  16. Chauvin A., Garcia Y., Lanos P. and Laubenheimer F., 2000. Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Phys. Earth Planet. Inter., 120, 111–136.

    Article  Google Scholar 

  17. Coe R., Grommé S. and Mankinen E., 1978. Geomagnetic paleointensities from radiocarbon-dated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res., 83, 1740–1756.

    Article  Google Scholar 

  18. Da Costa G.M., Van San E., De Grave E., Vandenberghe R.E., Barrón V. and Datas L., 2002. Al-hematites prepared by homogeneous precipitation of oxinates: material characterization and determination of the Morin transition. Phys. Chem. Miner., 29, 122–131, DOI: https://doi.org/10.1007/s002690100201.

    Article  Google Scholar 

  19. Daly L. and Le Goff M., 1996. An updated and homogenous world secular variation data base. I. Smoothing of the archaeomagnetic results. Phys. Earth Planet. Inter., 93, 159–190.

    Article  Google Scholar 

  20. Deanng J.A., Dann R.J.L., Hay K., Lees J.A., Loveland P.J., Maher B.A. and O’Grady K., 1996. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int., 124, 228–240.

    Article  Google Scholar 

  21. Dézi I. and Coey J.M.D., 1973. Magnetic and thermal properties of ε-Fe2O3. Phys. Status Solidi A-Appl. Res., 15, 681–685.

    Article  Google Scholar 

  22. Dodson M. H. and McLelland-Brown E., 1980. Magnetic blocking temperatures of single-domain grains during slow cooling. J. Geophys. Res., 85, 2625–2637.

    Article  Google Scholar 

  23. Dubrovskiy A.A., Balaev D.A., Shaykhutdinov K.A., Bayukov O.A., Pletnev O.N., Yakushkin S.S., Bukhtiyarova G.A. and Martyanov O.N., 2015. Size effects in the magnetic properties of ε-Fe2O3 nanoparticles. J. Appl. Phys., 118, 213901–213912, DOI: https://doi.org/10.1063/1.4936838.

    Article  Google Scholar 

  24. Fabian K., 2006. Approach to saturation analysis of hysteresis measurements in rock magnetism and evidence for stress dominated magnetic anisotropy in young mid-ocean ridge basalt. Phys. Earth Planet. Inter., 154, 299–307.

    Article  Google Scholar 

  25. Fedorov-Davydov G.A. (Ed.), 1987. Bolgar Town. Studies in the History and Culture. Nauka, Moscow, Russia, 232 pp. (in Russian).

    Google Scholar 

  26. Fisher I.N., Lewis T. and Embleton B.J. (Eds), 1987. Statistical Analysis of Spherical Data. Cambridge University Press, New York, 329 pp.

    Google Scholar 

  27. Folgheraiter G., 1899. Sur les variations séculaires de l’inclinaison magnétique dans l’antiquité. Journal de Physique Théorique et Appliquée, 8, 660–667, DOI: https://doi.org/10.1051/jphystap:018990080066001 (in French).

    Article  Google Scholar 

  28. Fox J.M.W. and Aitken M.J., 1980. Cooling-rate dependence of thermoremanent magnetisation. Nature, 283, 462–463.

    Article  Google Scholar 

  29. Gallet Y., Genevey A. and Le Goff M., 2002. Three millennia of directional variation of the Earth’s magnetic field in western Europe as revealed by archeological artefacts. Phys. Earth Planet. Inter., 131, 81–89.

    Article  Google Scholar 

  30. Gauss C.F., 1821. Theory of the combination of observations least subject to errors. Part I. In: Dieterich H. (Ed.), Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores. Classis Mathematicae. 5, 33–62, Royal Society of Sciences at Göttingen, Göttingen, Germany (in Latin).

    Google Scholar 

  31. Gauss C.F., 1823. Theory of the combination of observations least subject to errors. Part II. In: Dieterich H. (Ed.), Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores. Classis Mathematicae. 5, 63–90, Royal Society of Sciences at Göttingen, Göttingen, Germany (in Latin).

    Google Scholar 

  32. Gauss C.F., 1826. Supplement to the theory of the combination of observations least subject to errors. In: Dieterich H. (Ed.), Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores. Classis Mathematicae. 6, 57–98, Royal Society of Sciences at Göttingen, Göttingen, Germany (in Latin).

    Google Scholar 

  33. Gich M., Roig A., Frontera C., Molins E., Sort J., Popovici M., Chouteau G., Martin y Maerero D. and Nogués J., 2005. Large coercivity and low-temperature magnetic reorientation in ε-Fe2O3 nanoparticles. J. Appl. Phys., 98, 044307, DOI: https://doi.org/10.1063/1.1997297.

    Article  Google Scholar 

  34. Gómez-Paccard M., Chauvin A., Lanos P., Thiriot J. and Jiménez-Castillo P., 2006. Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain). Phys. Earth Planet. Inter., 157, 16–32.

    Article  Google Scholar 

  35. Hongre L., Hulot G. and Khokhlov A., 1998. An analysis of the geomagnetic field over the past 2000 years. Phys. Earth Planet. Inter., 106, 311–335.

    Article  Google Scholar 

  36. Hus J. and Geeraerts R., 1998. The direction of geomagnetic field in Belgium since roman times and the reliability of archaeomagnetic dating. Phys. Chem. Earth, 23, 997–1007, DOI: https://doi.org/10.1016/S0079-1946(98)00133-5.

    Article  Google Scholar 

  37. Jackson A., Jonkers A. and Walker M., 2000. Four centuries of geomagnetic secular variation from historical records. Phil. Trans. R. Soc. London A, 358, 957–990.

    Article  Google Scholar 

  38. Jasonov P.G., Nourgaliev D.K., Burov B.V. and Heller F., 1998. A modernized coercivity spectrometer. Geol. Carpat., 49, 224–225.

    Google Scholar 

  39. Jeffreys H., 1932. On the theory of errors and least squares. Proc. R. Soc. London A, 138, 48–55, DOI: https://doi.org/10.1098/rspa.1932.0170.

    Article  Google Scholar 

  40. Jiang Z., Liu Q., Dekkers M.J., Colombo C., Yu Y., Barrón V. and Torrent J., 2014. Ferro and antiferromagnetism of ultrafinegrained hematite. Geochem. Geophys. Geosyst., 15, 2699–2712, DOI: https://doi.org/10.1002/2014GC005377.

    Article  Google Scholar 

  41. Jiang Z., Liu Q., Zhao X., Jin C., Liu C. and Li S., 2015. Thermal magnetic behaviour of Al-substituted haematite mixed with clay minerals and its geological significance. Geophys. J. Int., 200, 130–143, DOI: https://doi.org/10.1093/gji/ggu377.

    Article  Google Scholar 

  42. Korte M., Constable C., Donadini F. and Holme R., 2011. Reconstructing the Holocene geomagnetic field. Earth Planet. Sci. Lett., 312, 497–505.

    Article  Google Scholar 

  43. Khlebnikova T.A., 1987. The history of the archaeological study of the Bulgarian settlement. Stratigraphy. In: Fedorov-Davydov G.A. (Ed.), Topography of the City of Bolgar: Sketches History and Culture. Nauka, Moscow, Russia, 32–88.

    Google Scholar 

  44. Kirschvink J.L., 1980. The least-squares line and plane and the analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc., 62, 699–718.

    Article  Google Scholar 

  45. Koenigsberger J.G., 1938a. Natural residual magnetism of eruptive rocks, Part I. Terr. Magn. Atmos. Electr., 43, 119–130.

    Article  Google Scholar 

  46. Koenigsberger J.G., 1938b. Natural residual magnetism of eruptive rocks, Part II. Terr. Magn. Atmos. Electr., 43, 299–320.

    Article  Google Scholar 

  47. Kovacheva M., 1992. Updated archaeomagnetic results from Bulgaria: the last 2000 years, archaeomagnetic database from Bulgaria: the last 8000 years. Phys. Earth Planet. Inter., 70, 219–223.

    Article  Google Scholar 

  48. Kovacheva M., 1997. Archaeomagnetic database from Bulgaria. Phys. Earth Planet. Inter., 102, 145–151.

    Article  Google Scholar 

  49. Lanos P., Le Goff M., Kovacheva M. and Schnepp E., 2005. Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophys. J. Int., 160, 440–476, DOI: https://doi.org/10.1111/j.1365-246X.2005.02490.x.

    Article  Google Scholar 

  50. Le Goff M. and Gallet Y., 2004. A new three-axis vibrating sample magnetometer for continuous high-temperature magnetization measurements: applications to paleo- and archeo-intensity determinations. Earth Planet. Sci. Lett., 229, 31–43, DOI: https://doi.org/10.1016/j.epsl.2004.10.025.

    Article  Google Scholar 

  51. López-Sánchez J., Muñoz-Noval Á., Serrano A., Abuin M., de la Figuera J., Marco J., Perez L., Carmona N. and Rodriguez de la Fuente O., 2016. Growth, structure and magnetism of ε-Fe2O3 in nanoparticle form. RSC Adv., 6, 46380–46387, DOI: https://doi.org/10.1039/C6RA01912A.

    Article  Google Scholar 

  52. López-Sánchez J., McIntosh G., Osete M.L., del Campo A., Villalaín J.J., Pérez L., Kovacheva M. and Rodriguez de la Fuente O., 2017. Epsilon iron oxide: Origin of the high coercivity stable low Curie temperature magnetic phase found in heated archeological materials. Geochem. Geophys. Geosyst, 18, 2646–2656, DOI: https://doi.org/10.1002/2017GC006929, 2017.

    Article  Google Scholar 

  53. Machala L., Tuček J. and Zbořil R., 2011. Polymorphous transformations of nanometric Iron(III) oxide: A review. Chem. Mat., 23, 3255–3272, DOI: https://doi.org/10.1021/cm200397g.

    Article  Google Scholar 

  54. Morin F. J., 1950. Magnetic susceptibility of α-Fe2O3 and α-Fe2O3 with added Titanium. Phys. Rev., 78, 819–820, DOI: https://doi.org/10.1103/physrev.78.819.2.

    Article  Google Scholar 

  55. Morrish A.H. (Ed.), 1994. Canted Antiferromagnetism: Hematite. World Scientific Publishing, Singapore, 192 pp.

    Google Scholar 

  56. Nachasova I. and Burakov K., 2008. Archaeomagnetic studies of materials from the Gorelyi Les and Ust-Khaita monuments (Eastern Siberia). Izv.-Phys. Solid Earth, 44, 249–255.

    Article  Google Scholar 

  57. Nagata T., Arai Y. and Momose K., 1963. Secular variation of the geomagnetic total force during the last 5000 years. J. Geophys. Res., 68, 5277–5282.

    Article  Google Scholar 

  58. Nechaeva T.B. 1972. Major Issues of Archaeomagnetic Dating. Absolute Dating in Archaeology. Nauka, Moscow, Russia, http://www.archeologia.ru/Library/Book/f73c9ffbc63c (in Russian).

    Google Scholar 

  59. Noel M. and Batt C.M., 1990. A method for correcting geographically separated remanence directions for the purpose of archaeomagnetic dating. Geophys. J. Int., 102, 753–756.

    Article  Google Scholar 

  60. Nourgaliev D., Borisov A., Heller F., Burov B., Jasonov P., Khasanov D. and Ibragimov S., 1996. Geomagnetic secular variation through the last 3500 years as recorded by Lake Aslikul sediments from Eastern Europe (Russia). Geophys. Res. Lett., 23, 375–378.

    Article  Google Scholar 

  61. Nouragaliev D., Heller F., Burov B., Borisov A., Yasonov P., Khasanov D. and Ibragimov S., 2000a. Geomagnetic variations through the last 4000 years as recorded by Lake Aslikul sediments (South-Western Bashkiria). Geomagn. Aeron., 4, 499–508.

    Google Scholar 

  62. Nourgaliev D.K., Heller F., Borissov A., Yasonov P., Burov B. and Khasanov D., 2000b. Holocene PSV paleomagnetic records from Lakes Naroch and Svir, Belorussia: preliminary results. Terra Nostra, 10, 84–87.

    Google Scholar 

  63. Nourgaliev D., Heller F., Borisov A., Hajdas I., Bonani G., Iassonov P. and Oberhänsli H., 2003a. Very high resolution paleosecular variation record for the last 1200 years from the Aral Sea. Geophys. Res. Lett., 30, 1914, SDE 4–1–4–4, DOI: https://doi.org/10.1029/2003GL018145.

    Article  Google Scholar 

  64. Nourgaliev D.K., Borisov A.D., Yasonov P.G., Burov B.V., Khasanov D.I., Ibragimov Sh.Z., Chernova I.Yu. and Heller F., 2003b. Geomagnetic field variations in Central Europe over the last 12000 years from Lake Naroch (Belarus) sediments. Izv.-Phys. Solid Earth, 39, 247–256.

    Google Scholar 

  65. Nourgaliev D.K., Heller F., Borisov A.C., Yasonov P.G., Chernova I.Y. and Hajdas I., 2005. Principal features (master curve) of geomagnetic field variations in Belorussia during the last 12 thousand years. Russian J. Earth Sci., 7, 1–6.

    Article  Google Scholar 

  66. Nourgaliev D.K., Yasonov P.G., Oberhänsli H., Heller F., Borisov A.S., Chernova I.Y., Akdasov E.I. and Burov B.V., 2007. Paleomagnetic correlation of sedimentary sequences: The use of secular geomagnetic variations for the differentiation and correlation of Holocene Aral Sea deposits. Izv.-Phys. Solid Earth, 43, 836–843.

    Article  Google Scholar 

  67. Özdemir Ö. and Dunlop D.J., 2000. Intermediate magnetite formation during dehydration of goethite. Earth Planet. Sci. Lett., 177, 59–67.

    Article  Google Scholar 

  68. Özdemir Ö., Dunlop D.J. and Berquó T.S., 2008. Morin transition in hematite: Size dependence and thermal hysteresis. Geochem. Geophys. Geosyst., 9, Q10Z01, DOI: https://doi.org/10.1029/2008GC002110.

    Article  Google Scholar 

  69. Paterson G.A., Tauxe L., Biggin A.J., Shaar R. and Jonestrask L.C., 2014. On improving the selection of Thellier-type paleointensity data. Geochem. Geophys. Geosyst, 4, 1180–1192, DOI: https://doi.org/10.1002/2013GC005135.

    Article  Google Scholar 

  70. Pavón-Carrasco J.F., Osete M.L., Torta J.M. and Gaya-Piqué L.R., 2009. A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: Applications to archaeomagnetic dating. Geochem. Geophys. Geosyst., 10, Q03013, DOI: https://doi.org/10.1029/2008GC002244.

    Article  Google Scholar 

  71. Poletti W., Hartmann G.A., Hill M.J., Biggin A.J. and Trindade R.I.F., 2013. The cooling-rate effect on microwave archeointensity estimates. Geophys. Res. Lett., 40, 3847–3852.

    Article  Google Scholar 

  72. Popovici M., Gich M., Nižňansky D., Roig A., Savii C., Casas L., Molins E., Zaveta K., Enache C., Sort J., de Brion S., Chouteau G. and Nogués J., 2004. Optimized synthesis of the elusive ε-Fe2O3 phase via sol-gel chemistry. Chem. Mat, 16, 5542–5548.

    Article  Google Scholar 

  73. Roberts A.P., Cui Y.L. and Verosub K.L., 1995. Wasp-waited hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res., 100, 17909–17924, DOI: https://doi.org/10.1029/95JB00672.

    Article  Google Scholar 

  74. Rusakov O.M. and Zagniy G.F., 1973. Intensity of the geomagnetic field in the Ukraine and Moldavia during the past 6000 years. Archaeometry, 15, 275–285.

    Article  Google Scholar 

  75. Salnaia N.V., Gallet Y., Genevey A., Glazunova O.N. and Gavryushkin D.A., 2017a. New archaeointensity results on a baked-clay tile collection from the new Jerusalem Monastery (Moscow Region, Russia). Geophys. Res., 18/2, DOI: https://doi.org/10.21455/gr2017.2-6.

  76. Salnaia N., Gallet Y., Genevey A. and Antipov I., 2017b. New archeointensity data from Novgorod (North-Western Russia) between c. 1100 and 1700 AD. Implications for the European intensity secular variation. Phys. Earth Planet. Inter., 269, 18–28, DOI: https://doi.org/10.1016/j.pepi.2017.05.012.

    Article  Google Scholar 

  77. Schnepp E. and Lanos P., 2006. A preliminary secular variation reference curve for archaeomagnetic dating in Austria. Geophys. J. Int., 166, 91–96.

    Article  Google Scholar 

  78. Shepherd J.P., Aragon R., Koenitzer J.W. and Honig J.M., 1985. Changes in the nature of the Verwey transition in nonstoichiometric magnetite (Fe3O4). Phys. Rev. B, 32, 1818–1819.

    Article  Google Scholar 

  79. Sheynin O.B., 1979. C.F. Gauss and the Theory of Errors. Archive for History of Exact Sciences, 20/1, 21–72.

    Article  Google Scholar 

  80. Sivia D.S. (Ed.), 1996. Data Analysis: A Bayesian Tutorial. Clarendon Press, Oxford, U.K., 189 pp.

    Google Scholar 

  81. Spassov S. and Hus J., 2006. Estimating baking temperatures in a Roman pottery kiln by rock magnetic properties: implications of thermochemical alteration for archaeointensity determinations. Geophys. J. Int., 167, 592–604.

    Article  Google Scholar 

  82. Tarhov E., 1970a. Geomagnetic inclination in Siberia according to archaeomagnetic data. Geomagn. Aeron., 10, 513–523.

    Google Scholar 

  83. Tarhov E., 1970b. Secular variations of geomagnetic inclination in Central Russia according to archaeomagnetic data. Geomagn. Aeron., 10, 129–133.

    Google Scholar 

  84. Tading D.H., 1988. Secular variations of the geomagnetic field — the archaeomagnetic record. In: Stephenson E.R. and Wolfendale A.W. (Eds), Secular Solar and Geomagnetic Variations in the Last 10,000 Years. Kluwer Academic Publishing, Dordrecht, The Netherlands, 349–365.

    Google Scholar 

  85. Tema E. and Kondopoulou D., 2011. Secular variation of the Earth’s magnetic field in the Balkan region during the last 8 millennia based on archaeomagnetic data. Geophys. J. Int., 186, 603–614, DOI: https://doi.org/10.1111/j.1365-246X.2011.05088.x.

    Article  Google Scholar 

  86. Tema E., Morales J., Goguitchaichvili A. and Camps P. 2013. New archaeointensity data from Italy and geomagnetic field intensity variation in the Italian Peninsula. Geophys. J. Int., 193, 603–614, DOI: https://doi.org/10.1093/gji/ggs120.

    Article  Google Scholar 

  87. Thellier E. (Ed.), 1938. Sur l’aimantation des terres cuites et ses applications géophysique. PhD Thesis. University of Paris, Presses Universitaires de France, Paris, France, 146 pp. (in French).

    Google Scholar 

  88. Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Géophys., 15, 285–376.

    Google Scholar 

  89. Tuček J., Zbořil R., Namai A. and Ohkoshi S.I., 2010. ε-Fe2O3: An advanced nanomaterial exhibiting giant coercive field, millimeter-wave ferromagnetic resonance, and magnetoelectric coupling. Chem. Mat., 22, 6483–6505, DOI: https://doi.org/10.1021/cm101967h.

    Article  Google Scholar 

  90. Vandenberghe R.E., Van San E., De Grave E. and Da Costa G.M., 2001. About the Morin transition in hematite in relation with particle size and aluminium substitution. Czech. J. Phys., 51, 663–675, DOI: https://doi.org/10.1023/A:1017697715646.

    Article  Google Scholar 

  91. Vasilieva I.N., 1988. About technology of production of non-pouring ceramics of the Bulgarian settlement. In: Fedorov-Davydov GA. (Ed.), City of Bolgar: Sketches of Craft Activity. Nauka, Moscow, Russia, 103–150 (in Russian).

    Google Scholar 

  92. Veinberg B.P. (Ed.), 1929. Catalogue of Magnetic Determinations in USSR and the Adjacent Countries for the Period of 1556–1926. Part 1. Central Geophysical Observatory, Leningrad (St. Petersburg), Russia, 215 pp. (in Russian).

    Google Scholar 

  93. Wakefield J. (Ed.), 2013. Bayesian and Frequentist Regression Methods. Springer Series in Statistics, Springer, New York, NY, 702 pp., ISBN 978-1-4419-0925-1.

    Google Scholar 

  94. Yanina S.A., 1954. Juchi coins from excavations and collections of Kuibyshev expedition in Bolgar in 1946–1952 years (KAE I). Materials and Research in Archeology in USSR. M. -No 42, 424–457 (in Russian).

    Google Scholar 

  95. York D., 1966. Least square fitting of a straight line. Can. J. Phys., 44, 1079–1086.

    Article  Google Scholar 

  96. Zagnii G.F. and Rusakov O.M., 1982. Paleosecular Geomagnetic Variations in South-Western USSR. Naukova Dumka, Kiev, Ukraine, 126 pp. (in Russian).

    Google Scholar 

  97. Zijderveld J.D.A., 1967. A.C. demagnetization of rocks: analysis of results. In: Collinson D.W., Creer K.M. and Runcorn S.K. (Eds), Methods in Paleomagnetism. Elsevier, Amsterdam, The Netherlands, 254–286.

    Google Scholar 

  98. Zijderveld J.D.A., 1975. Paleomagnetism of the Esterel Rocks. PhD Thesis, State University of Utrecht, Utrecht, The Netherlands, 199 pp.

    Google Scholar 

Download references

Acknowledgements

This article is devoted to our dear colleague Prof. Jozef Jan Edward Hus who passed away in early February 2020. Professor Hus was passionate about archaeomagnetism and strongly fostered its application in the archaeological community and amongst archaeomagnetists in Belgium and abroad. The authors, namely, S.S., D.M.K, L.R.K and D.K.N., would like to express their deepest appreciation to Prof. Hus for his support and encouragement in their archaeomagnetic research. The authors owe a very important debt to Karl Fabian and an anonymous reviewer for their constructive and encouraging comments and suggestions, as well as to Patrick Arneitz and Ramon Egli for a fruitful discussion and providing BIGMUDI4k. 1 model data for comparison. The authors are grateful to Maxwell Brown for verifying the CALS 10k.1b PSV model curve. L.R.K, and D.M.K acknowledge a research stay at the Geophysical Centre of the Royal Meteorological Institute of Belgium. The contribution of D.M.K was funded by the Russian Foundation for Basic Research, project number 17-05-01246 and the one of D.K.N by the Russian Science Foundation project number 18-17-00251.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Simo Spassov.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kosareva, L.R., Kuzina, D.M., Nurgaliev, D.K. et al. Archaeomagnetic investigations in Bolgar (Tatarstan). Stud Geophys Geod 64, 255–292 (2020). https://doi.org/10.1007/s11200-019-0493-3

Download citation

Keywords

  • archaeology
  • Golden Horde
  • archaeomagnetism
  • Thellier-Thellier method
  • Bayesian statistics
  • geomagnetic field
  • palaeosecular variation
  • magnetic property analyses