Advertisement

Influence of use of different values of tidal parameters h2, l2 on determination of coordinates of SLR stations

  • Marcin JagodaEmail author
Article
  • 13 Downloads

Abstract

The paper presents the results of coordinates determination for some satellite laser ranging (SLR) stations in the new ITRF2014 system based on LAGEOS-1 and LAGEOS-2 satellite data. The analysis was conducted in two variants. In the first one, coordinates of the SLR stations were estimated with the use of the nominal values of the tidal parameters: h2 = 0.6078 and l2 = 0.0847 (i.e. the standard International Earth Rotation and Reference Systems Service recommended values). In the second, coordinates of the SLR stations were calculated with the use of values of the tidal parameters estimated in the author’s previous paper: h2 = 0.6140 and l2 = 0.0876 (determined from the LAGEOS-1 and LAGEOS-2 data). The influence of the tidal parameters changes on the computation of the stations’ coordinates was investigated. The maximum differences (X, Y, Z(Variant 1) — X, Y, Z(Variant 2)) of about 4 mm, were achieved for Z component for Yarragadee (station ID 7090) and Monument Peak (7110) and of about 3 mm for Y component for Yarragadee (7090) and Changchun (7237) stations. All calculations related to determining the satellite orbits and the SLR stations’ coordinates were carried out with the use of the GEODYN II NASA/GSFC software.

Keywords

SLR stations coordinates ITRF2014 tidal parameters Love/Shida numbers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z., Rebischung P., Métivier L. and Collilieux X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geoph. Res.- Solid Earth, 121, 6109–6131.CrossRefGoogle Scholar
  2. Bizouard C., Lambert S., Becker O. and Richard J.Y. 2017. Combined Solution C04 for Earth Orientation Parameters Consistent with International Terrestrial Reference Frame 2014. IERS Earth Orientation Product Centre, Observatoire de Paris, France.Google Scholar
  3. Diamante J. and Wiliamson M., 1972. Error Models for Solid Earth and Ocean Tidal Effects in Satellite Systems Analysis. Wolf Research and Development Corporation, Contract No. NAS 5–11735 Mod 57, Goddard Space Flight Center, Greenbelt, MD.Google Scholar
  4. Folkner W.M., Charlot P., Finger M.H., Williams J.G., Sovers O.J., Newhall X.X. and Standish E.M. Jr., 1994. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements. Astron. Astrophys., 287, 279–289.Google Scholar
  5. Jagoda M. and Rutkowska M., 2016a. Estimation of the Love numbers: k 2, k 3 using SLR data of the LAGEOS1, LAGEOS2, STELLA and STARLETTE satellites. Acta Geod. Geophys., 51, 493–504.CrossRefGoogle Scholar
  6. Jagoda M., Rutkowska M. and Kraszewska K., 2016b. The evaluation of time variability of tidal parameters h and l using SLR technique. Acta Geodyn. Geomater., 14, 153–158.CrossRefGoogle Scholar
  7. Jagoda M., Rutkowska M., Kraszewska K. and Suchocki C., 2018. Time changes of the potential Love tidal parameters k 2 and k 3. Stud. Geophys. Geod., 62, 586–595, DOI: 10.1007/s11200- 018-0610-8.CrossRefGoogle Scholar
  8. Lejba P., Schillak S. and Wnuk E., 2007. Determination of orbits and SLR stations’ coordinates on the basis of laser observations of the satellites Starlette and Stella. Adv. Space Res., 40, 143–149.CrossRefGoogle Scholar
  9. Lejba P. and Schillak S., 2011. Determination of station positions and velocities from laser ranging observations to Ajisai, Starlette and Stella satellites. Adv. Space Res., 47, 654–662.CrossRefGoogle Scholar
  10. Mathews P.M., Dehant V. and Gipson J.M., 1997. Tidal station displacements. J. Geophys. Res.- Solid Earth, 102, 20469–20477.CrossRefGoogle Scholar
  11. McCarthy J.J., Rowton S., Moore D., Pavlis D.E., Luthcke S.B. and Tsaoussi L.S., 1993. GEODYN II System Operation Manual, 1-5. STX System Corp., Lanham, MD.Google Scholar
  12. Mendes V.B. and Pavlis E.C., 2004. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett., 31, L14602.CrossRefGoogle Scholar
  13. Pearlman M.R., Degnan J.J. and Bosworth J.M., 2002. The International Laser Ranging Service. Adv. Space Res., 30, 135–143.CrossRefGoogle Scholar
  14. Petit G. and Luzum B., 2010. IERS Conventions. IERS Technical Note No. 36. Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt an Main, Germany.Google Scholar
  15. Rutkowska M., 1999. Investigation on stability of network solutions estimated from satellite laser measurements for 1993–1995. Artificial Satellites, 34, 77–135.Google Scholar
  16. Rutkowska M. and Jagoda M., 2010. Estimation of the elastic Earth parameters (h 2, l 2) using SLR data. Adv. Space Res., 46, 859–871.CrossRefGoogle Scholar
  17. Rutkowska M. and Jagoda M., 2015. SLR technique used for description of the Earth elasticity. Artificial Satellites, 50, 127–141.CrossRefGoogle Scholar
  18. Rutkowska M. and Schillak S., 1994. Estimation of the Borowiec station position from 5-year Lageos observations. Artificial Satellites, 29, 67–73.Google Scholar
  19. Rutkowska M., Romay Merino M.M., Schillak S. and Dow J.H., 1995. Improvement of the SLR Borowiec station position in the global network ITRF91. Adv. Space Res., 16, 97–100.CrossRefGoogle Scholar
  20. Schillak S., 2004. Analysis of the process of the determination of station coordinates by satellite laser ranging based on results of the Borowiec SLR station in 1993.5-2000.5. Part 2: Determination of the station coordinates. Artificial Satellites, 39, 265–287.Google Scholar
  21. Schillak S. and Wnuk E., 2002. The SLR stations coordinates determined from monthly arcs of Lageos-1 and Lageos-2 laser ranging in 1999–2001. Adv. Space Res., 31, 413–418.Google Scholar
  22. Schillak S., Kuźmicz-Cieślak M. and Wnuk E., 2001. Stability of coordinates of the SLR stations on a basis of Lageos-1 and Lageos-2 laser ranging in 1999. Artificial Satellites, 36, 85–96.Google Scholar
  23. Schillak S., Wnuk E., Kunimori H. and Yoshino T., 2006. Crustal deformation in the Key Stone network detected by satellite laser ranging. J. Geodesy, 79, 682–688.CrossRefGoogle Scholar
  24. Tapley B.D., Flechtner F., Bettadpur S.V. and Watkins M.M. 2013. The status and future prospect for GRACE after the first decade. Abstract. American Geophysical Union Fall Meeting 2013, (http://abstractsearch.agu.org/meetings/2013/FM/G32A-01.html). Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2019

Authors and Affiliations

  1. 1.Department of GeodesyTechnical University of KoszalinKoszalinPoland

Personalised recommendations