Assessing hydrological signal in polar motion from observations and geophysical models

  • Małgorzata WińskaEmail author
  • Justyna Śliwińska


Changes in Terrestrial Water Storage (TWS) due to seasonal changes in soil moisture, ice and snow loading and melting influence the Earth’s inertia tensor. Quantitative assessment of hydrological effects of polar motion remains unclear because of the lack of the observations and differences between various atmospheric and ocean models. We compare the effects of several hydrological excitation functions computed as the difference between the excitation function of polar motion Geodetic Angular Momentum (GAM) and joint atmospheric plus oceanic excitation functions, called geodetic residuals. Geodetic residuals are computed for different Atmospheric Angular Momentum (AAM) and Oceanic Angular Momentum (OAM) models and are analyzed and compared with the hydrological excitation function determined from the Land Surface Discharge Model. They are analyzed on decadal, interannual, seasonal and non-seasonal time scales. The equatorial components of hydrological geodetic excitation functions χ1 and χ2 are decomposed into prograde and retrograde time series by applying Complex Fourier Transform Models. The agreement between hydrological geodetic residuals and excitation functions is validated using Taylor diagrams. This shows that agreement is highly dependent on AAM and OAM models. Errors in these models affect the resulting geodetic residuals and have a strong impact on the Earth’s angular momentum budget.


hydrological signal polar motion geophysical excitations of polar motion 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adhikari S. and Ivins E.R., 2016. Climate-driven polar motion: 2003–2015. Sci. Adv., 2, e1501693, DOI: 10.1126-sciadv.1501693.CrossRefGoogle Scholar
  2. Barnes R.T.H., Hide R., White A.A. and Wilson C.A., 1983. Atmospheric angular momentum fluctuations, length-of-day changes and polar motion. Proc. R. Soc. A-Math. Phys. Eng. Sci., 387(1792), 31–73, DOI: 10.1098/rspa.1983.0050.CrossRefGoogle Scholar
  3. Bizouard C. and Gambis D., 2009. The combined solution C04 for Earth orientation parameters consistent with International Terrestrial Reference Frame 2005. In: Drewes H. (Ed.), Geodetic Reference Frames. International Association of Geodesy Symposia, 134. Springer, Berlin and Heidelberg, Germany, 265–270, DOI: 10.1007/978-3-642-00860-3_41.CrossRefGoogle Scholar
  4. Bizouard C. and Seoane L., 2010. Atmospheric and oceanic forcing of the rapid polar motion. J. Geodesy, 84, 19–30, DOI: 10.1007/s00190-009-0341-2.CrossRefGoogle Scholar
  5. Brzezinski A., Bizouard C. and Petrov S.D., 2002. Inuence of the atmosphere on Earth rotation: what new can be learned from the recent atmospheric angular momentum estimates. Surv. Geophys., 23, 33–69, DOI: 10.1023/A:1014847319391.CrossRefGoogle Scholar
  6. Brzezinski A., Nastula J., Kolaczek B. and Ponte R.M., 2005. Oceanic excitation of polar motion from intraseasonal to decadal periods. In: Sansò F. (Ed.), A Window on the Future of Geodesy. International Association of Geodesy Symposia, 128. Springer, Berlin and Heidelberg, Germany, 591–596, DOI: 10.1007/3-540-27432-4 100.CrossRefGoogle Scholar
  7. Brzezinski A., Nastula J. and Kolaczek B., 2009. Seasonal excitation of polar motion estimated from recent geophysical models and observations. J. Geodyn., 48, 235–240, DOI: 10.1016/j.jog.2009.09.021.CrossRefGoogle Scholar
  8. Chao B.F., 1989. Length-of-day variations caused by el niño-southern oscillation and quasi-biennial oscillation. Science, 243(4893), 923–925, DOI: 10.1126/science.243.4893.923.CrossRefGoogle Scholar
  9. Chao B.F., Au A.Y., Boy J.-P. and Cox C.M., 2003. Time-variable gravity signal of an anomalous redistribution of water mass in the extra tropic pacific during 1998–2002. Geochem. Geophys. Geosyst., 4, Art.No. 1096, DOI: 10.1029/2003GC000589.Google Scholar
  10. Chen W., Ray J., Shen W. and Huang C., 2013. Polar motion excitations for an Earth model with frequency-dependent responses: 2. Numerical tests of the meteorological excitations. J. Geophys. Res.-Solid Earth, 118, 4995–5007, DOI: 10.1002/jgrb.50313.CrossRefGoogle Scholar
  11. Chen W., Shen W. and Dong X., 2010. Atmospheric excitation of polar motion. Geo-Spatial Inf. Sci., 13, 130–136, DOI: 10.1007/s11806-010-0042-2.CrossRefGoogle Scholar
  12. Dickey J.O., Marcus S.L. and de Viron O., 2010. Closure in the Earth’s angular momentum budget observed from subseasonal periods down to four days: No core effects needed. Geophys. Res. Lett., 37, L03307, DOI: 10.1029/2009GL041118.CrossRefGoogle Scholar
  13. Dill R., 2009. Hydrological induced Earth rotation variations from standalone and dynamically coupled simulations. In: Soffel M. and Capitaine N. (Eds), Proceedings of the “Journées 2008 Systèmes de Référence Spatio-Temporels”. Lohrmann-Observatorium and Observatoire de Paris, France, 115–118.Google Scholar
  14. Dobslaw H., Dill R., Grötzsch A., Brzezinski A. and Thomas M., 2010. Seasonal polar motion excitation from numerical models of atmosphere, ocean, and continental hydrosphere. J. Geophys. Res.-Solid Earth, 115, Art.No. B10406, DOI: 10.1029/2009JB0071276.Google Scholar
  15. Dobslaw H. and Dill R., 2018a. Predicting Earth orientation changes from global forecasts of atmosphere-hydrosphere dynamics. Adv. Space Res., 61, 1047–1054, DOI: 10.1016/j.asr.2017.11.044.CrossRefGoogle Scholar
  16. Dobslaw H. and Dill R., 2018b. Effective Angular Momentum Functions From Earth System Modelling at GeoForschungsZentrum in Potsdam. Technical Report, Revision 1.0 (May 31, 2018), GFZ Potsdam, Germany, _Product_Description_Document.pdfGoogle Scholar
  17. Eubanks T.M., 1993. Variations in the orientation of the Earth. In: Smith D.E. and Turcotte D.L. (Eds), Contributions of Space Geodesy to Geodynamics: Earth Dynamics, 24. American Geophysical Union, Washington, D.C., DOI: 10.1029/GD024p0001.Google Scholar
  18. Gross R., 2007. Earth rotation variations - long period. In: Herring T.A., (Ed.), Treatise on Geophysics, 11. Elsevier, Oxford, U.K., 239–294, DOI: 10.1016/B978-044452748-6.00057-2.Google Scholar
  19. Gross R.S., 2009. An improved empirical model for the effect of long period ocean tides on polar motion. J. Geodesy, 83, 635–644, DOI: 10.1007/s00190-008-0277-y.CrossRefGoogle Scholar
  20. Gross R.S., Fukumori I. and Menemenlis D., 2003. Atmospheric and oceanic excitation of the Earth’s wobbles during 1980–2000. J. Geophys. Res.-Solid Earth, 108, Art.No. 2370, DOI: 10.1029/2002JB002143.Google Scholar
  21. Jin S., Chambers D.P. and Tapley B.D., 2010. Hydrological and oceanic effects on polar motion from GRACE and models. J. Geophys. Res.-Solid Earth, 115, Art.No. B02403, DOI: 10.1029/2009JB006635.Google Scholar
  22. Jin S., Hassan A. and Feng G., 2012. Assessment of terrestrial water contributions to polar motion from GRACE and hydrological models. J. Geodyn., 62, 40–48, DOI: CrossRefGoogle Scholar
  23. Jungclaus J.H., Fischer N., Haak H., Lohmann K., Marotzke J., Matei D., Mikolajewicz U., Notz D. and von Storch J.S., 2013. Characteristics of the ocean simulations in MPIOM, the ocean component of the MPI‐Earth system model. J. Adv. Model. Earth Syst., 5, 422–446, DOI: 10.1002/jame.20023.CrossRefGoogle Scholar
  24. Meyrath T., Rebischung P. and van Dam T., 2017. GRACE era variability in the Earth’s oblateness: a comparison of estimates from six different sources. Geophys. J. Int., 208, 1126–1138, DOI: 10.1093/gji/ggw441.CrossRefGoogle Scholar
  25. Naito I., Zhou Y.H., Sugi M., Kawamura R. and Sato N., 2000. Three-dimensional atmospheric angular momentum simulated by the Japan Meteorological Agency model for the period of 1955–1994. J. Meteorol. Soc. Jpn. Ser. II, 78, 111–122, DOI: 10.2151/jmsj1965.78.2 111.CrossRefGoogle Scholar
  26. Nastula, J., Gross, R. and Salstein, D. (2012), Oceanic excitation of polar motion: Identifcation of specifc oceanic areas important for polar motion excitation, J. Geodyn., 62(Supplement C), 16–23. DOI: CrossRefGoogle Scholar
  27. Nastula J., Paśnicka M. and Kolaczek B., 2011. Comparison of the geophysical excitations of polar motion from the period: 1980.0–2009.0. Acta Geophys., 59, 561–577. DOI: 10.2478/s11600- 011-0008-2.CrossRefGoogle Scholar
  28. Nastula J. and Ponte R.M., 1999. Further evidence for oceanic excitation of polar motion. Geophys. J. Int., 139, 123–130. DOI: 10.1046/j.1365- 246X.1999.00930.x.CrossRefGoogle Scholar
  29. Nastula J., Ponte R.M. and Salstein D.A., 2007. Comparison of polar motion excitation series derived from GRACE and from analyses of geophysical fluids. Geophys. Res. Lett., 34. L11306, DOI: 10.1029/2006GL028983.CrossRefGoogle Scholar
  30. Nastula J. and Salstein D., 1999. Regional atmospheric angular momentum contributions to polar motion excitation. J. Geophys. Res.-Solid Earth, 104, 7347–7358, DOI: 10.1029 /1998JB900077.CrossRefGoogle Scholar
  31. Nastula J., Salstein D. and Ponte R., 2003. Empirical patterns of variability in atmospheric and oceanic excitation of polar motion. J. Geodyn., 36, 383–396, DOI: 10.1016/S0264- 3707(03)00057-7.CrossRefGoogle Scholar
  32. Neef L.J. and Matthes K., 2012. Comparison of Earth rotation excitation in data-constrained and unconstrained atmosphere models. J. Geophys. Res.-Atmos., 117, Art.No. D02107, DOI: 10.1029/2011JD016555.Google Scholar
  33. Ponte R.M., 1997. Oceanic excitation of daily to seasonal signals in Earth rotation: results from a constant-density numerical model. Geophys. J. Int., 130, 469–474, DOI: 10.1111/j.1365- 246X.1997.tb05662.x.CrossRefGoogle Scholar
  34. Salstein D.A., Rosen R.D., Kann D.M. and Miller A.J., 1993. The sub-bureau for atmospheric angular momentum of the International Earth Rotation Service: A meteorological data center with geodetic applications. Bull. Am. Meteorol. Soc., 74, 67–80, DOI 10.1175/1520- 0477(1993)074<0067:TSBFAA>2.0.CO;2.CrossRefGoogle Scholar
  35. Schindelegger M., Böhm J., Salstein D. and Schuh H., 2011. High-resolution atmospheric angular momentum functions related to Earth rotation parameters during CONT08. J. Geodesy, 85, 425–433, DOI: 10.1007/s00190-011-0458-y.CrossRefGoogle Scholar
  36. Seoane L., Biancale R. and Gambis D., 2012. Agreement between Earth’s rotation and mass displacement as detected by GRACE. J. Geodyn., 62, 49–55, DOI: 10.1016 /j.jog.2012.02.008.CrossRefGoogle Scholar
  37. Seoane L., Nastula J., Bizouard C. and Gambis D., 2011. Hydrological excitation of polar motion derived from GRACE gravity field solutions. Int. J. Geophys., 2011, Article ID 174396, DOI: 10.1155/2011/174396.Google Scholar
  38. Sliwinska J. and Nastula J., 2017. Variability in terrestrial water storage and its effect on polar motion. Geophys. Res. Abs., 19, EGU2017–1258.Google Scholar
  39. Stammer D., Wunsch C., Fukumori I. and Marshall J., 2002. State estimation improves prospects for ocean research. Eos Trans. AGU, 83(27), 289–295, DOI: 10.1029/2002EO000207.CrossRefGoogle Scholar
  40. Taylor K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res.-Atmos., 106, 7183–7192, DOI: 10.1029/2000JD900719.CrossRefGoogle Scholar
  41. Vicente R.O. and Wilson C.R., 2002. On long-period polar motion. J. Geodesy, 76, 199–208, DOI: 10.1007/s00190-001-0241-6.CrossRefGoogle Scholar
  42. Wahr J.M., 1983. The effects of the atmosphere and oceans on the Earth’s wobble and on the seasonal variations in the length of day - II. Results. Geophys. J. R. Astron. Soc., 74, 451–487, DOI: 10.1111/j.1365-246X.1983.tb01885.x.Google Scholar
  43. Wilson C.R., 1985. Discrete polar motion equations. Geophys. J. R. Astron. Soc., 80, 551–554, DOI: 10.1111/j.1365-246X.1985.tb05109.x.CrossRefGoogle Scholar
  44. Winska M., Nastula J. and Kolaczek B., 2016. Assessment of the global and regional land hydrosphere and its impact on the balance of the geophysical excitation function of polar motion. Acta Geophys., 64, 270–292, DOI: 10.1515/acgeo-2015-0041.CrossRefGoogle Scholar
  45. Winska M., Nastula J. and Salstein D., 2017. Hydrological excitation of polar motion by different variables from the GLDAS models. J. Geodesy, 91, 1461–1473, DOI: 10.1007/s00190-017–1036–8.CrossRefGoogle Scholar
  46. Zhou Y.H., Chen J.L., Liao X.H. and Wilson C.R., 2005. Oceanic excitations on polar motion: a cross comparison among models. Geophys. J. Int., 162, 390–398, DOI: 10.1111/j.1365- 46X.2005.02694.x.CrossRefGoogle Scholar
  47. Zhou Y.H., Salstein D.A. and Chen J.L., 2006. Revised atmospheric excitation function series related to Earth’s variable rotation under consideration of surface topography. J. Geophys. Res.-Atmos., 111, Art.No. D12108, DOI: 10.1029/2005JD006608.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2019

Authors and Affiliations

  1. 1.Institute of Roads and BridgesWarsaw University of TechnologyWarsawPoland
  2. 2.Space Research CenterPolish Academy of SciencesWarsawPoland

Personalised recommendations