Advertisement

The effect of the noise, spatial distribution, and interpolation of ground gravity data on uncertainties of estimated geoidal heights

  • Mehdi Goli
  • Ismael ForoughiEmail author
  • Pavel Novák
Article
  • 22 Downloads

Abstract

The uncertainties of the geoidal heights estimated from ground gravity data caused by their spatial distribution and noise are investigated in this study. To test these effects, the geoidal heights are estimated from synthetic ground gravity data using the Stokes- Helmert approach. Five different magnitudes of the random noise in ground gravity data and three types of their spatial distribution are considered in the study, namely grid, semigrid and random. The noise propagation is estimated for the two major computational steps of the Stokes-Helmert approach, i.e., the downward continuation of ground gravity and Stokes’s integration. Numerical results show that in order to achieve the 1-cm geoid, the ground gravity data should be distributed on the grid or semi-grid with the average angular distance less than 2′. If they are randomly distributed (scattered gravity points), the 1-cm geoid cannot be estimated if the average angular distance between scattered gravity points is larger than 1′. Besides, the noise of the gravity data for the tree types of their spatial distribution should be below 1 mGal to estimate the 1-cm geoid. The advantage of interpolating scattered gravity points onto the regular grid, rather than using them directly, is also investigated in this study. Numerical test shows that it is always worth interpolating the scattered points to the regular grid except if the scattered gravity points are sparser than 5′.

Keywords

geoid gravity downward continuation interpolation Stokes’s integration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afrasteh Y., Safari A., Sheng M., Kingdon R.W. and Foroughi I., 2017. The effect of noise on geoid height in Stokes-Helmert method. In: International Association of Geodesy Symposia. Springer-Verlag, Berlin, Heidelberg, Germany, DOI: 10.1007/1345_2017_25 (in print).Google Scholar
  2. Ågren J. and Sjöberg L.E., 2014. Investigation of gravity data requirements for a 5 mm-quasigeoid model over Sweden. In: Marti U. (Ed.), Gravity, Geoid and Height Systems. International Association of Geodesy Symposia, 141. Springer-Verlag, Cham, Switzerland, 143–150, DOI: 10.1007/978-3-319-10837-7_18.Google Scholar
  3. Ardalan A.A. and Grafarend E.W., 2004. High-resolution regional geoid computation without applying Stokes’s formula: a case study of the Iranian geoid. J. Geodesy, 78, 138–156, DOI: 10.1007/s00190-004-0385-2.Google Scholar
  4. Bajracharya S., 2003. Terrain Effects on Geoid Determination. MSc Thesis. Department of Geomatics Engineering, University of Calgary, Calgary, Alberta, Canada.Google Scholar
  5. Bauer F. and Lukas M.A., 2011. Comparingparameter choice methods for regularization of ill-posed problems. Math. Comput. Simul., 81, 1795–1841, DOI: 10.1016/j.matcom.2011.01.016.CrossRefGoogle Scholar
  6. Ellmann A. and Vaníček P., 2007. UNB application of Stokes-Helmert’s approach to geoid computation. J. Geodyn., 43, 200–213, DOI: 10.1016/j.jog.2006.09.019.CrossRefGoogle Scholar
  7. Farahani H.H., Klees R. and Slobbe C., 2017. Data requirements for a 5-mm quasi-geoid in the Netherlands. Stud. Geophys. Geod., 61, 675–702, DOI: 10.1007/s11200-016-0171-7.CrossRefGoogle Scholar
  8. Foroughi I. and Tenzer R., 2014. Assessment of the direct inversion scheme for the quasigeoid modeling based on applying the Levenberg-Marquardt algorithm. Appl. Geomat., 6, 171–180, DOI: 10.1007/s12518-014-0131-2.CrossRefGoogle Scholar
  9. Foroughi I., Afrasteh Y., Ramouz S. and Safari A., 2017a. Local evaluation of earth gravitational models, case study: Iran. Geodesy Cartogr., 43, 1–13, DOI: 10.3846/20296991.2017.1299839.CrossRefGoogle Scholar
  10. Foroughi I., Vaníček P., Novák P., Kingdon R.W., Sheng M. and Santos M.C., 2017b. Optimal combination of satellite and terrestrial gravity data for regional geoid determination using Stokes-Helmert’s method, the Auvergne test case. In. International Association of Geodesy Symposia. Springer-Verlag, Berlin, Heidelberg, Germany, DOI: 10.1007/1345_2017_22 (in print).Google Scholar
  11. Foroughi I., Vaníček P., Kingdon R.W., Goli M., Sheng M., Afrasteh Y., Novák P., Santos M.C., 2018. Sub-centimetre geoid. J. Geodesy, DOI: 10.1007/s00190-018-1208-1 (in print).Google Scholar
  12. Goli M. and Najafi-Alamdari M., 2011. Planar, spherical and ellipsoidal approximations of Poisson′s integral in near zone. J. Geod. Sci., 1, 17–24, DOI: 10.2478/v10156-010-0003-6.Google Scholar
  13. Goli M., Foroughi I. and Novák P., 2018. On estimation of stopping criteria for iterative solutions of gravity downward continuation. Can. J. Earth Sci., 55, 397–405, DOI: 10.1139/cjes-2017- 0208.CrossRefGoogle Scholar
  14. Goli M., Najafi-Alamdari M. and Vaníček P., 2011. Numerical behaviour of the downward continuation of gravity anomalies. Stud. Geophys. Geod., 55, 191–202, DOI: 10.1007/s11200- 011-0011-8.CrossRefGoogle Scholar
  15. Hansen P.C., 1998. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia, PA, ISBN: 978-0-898714-03-6.CrossRefGoogle Scholar
  16. Hardy R.L., 1971. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., 76, 1905–1915, DOI: 10.1029/JB076i008p01905.CrossRefGoogle Scholar
  17. Heck B., 2003. On Helmert methods of condensation. J. Geodesy, 77, 155–170, DOI: 10.1007/s00190-003-0318-5.CrossRefGoogle Scholar
  18. Heiskanen W.H. and Moritz H., 1967. Physical Geodesy. W.H. Freeman & Co., San Francisco, CA.Google Scholar
  19. Huang J., Pagiatakis S.D. and Véronneau M., 2001. Truncation of Poisson’s integral in upward and downward continuations of the Earth’s gravity. In: Sideris M.G. (Ed.), Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia, 123. Springer-Verlag, Berlin, Heidelberg, Germany, 323–327, DOI: 10.1007/978-3-662-04827-6_54.CrossRefGoogle Scholar
  20. Huang J., Fotopoulos G., Cheng M.K., Véronneau M. and Sideris M.G., 2007. On the estimation of the regional geoid error in Canada. In: Tregoning P. and Rizos C. (Eds), Dynamic Planet International Association of Geodesy Symposia, 130. Springer-Verlag, Berlin, Heidelberg, Germany, 272–279, DOI: 10.1007/978-3-540-49350-1_41.CrossRefGoogle Scholar
  21. Huang J., Vaníček P. and Novák P., 2000. An alternative algorithm to FFT for the numerical evaluation of Stokes’ integral. Stud. Geophys. Geod., 44, 374–380, DOI: 10.1023 /A:1022160504156.CrossRefGoogle Scholar
  22. Huang J. and Veronneau M., 2005. Applications of downward-continuation in gravimetric geoid modeling: case studies in Western Canada. J. Geodesy, 79, 135–145, DOI: 10.1007/s00190- 005-0452-3.CrossRefGoogle Scholar
  23. Janák J., Vańiček P., Foroughi I., Kingdon R., Sheng M.B. and Santos M.C., 2017. Computation of precise geoid model of Auvergne using current UNB Stokes-Helmert’s approach. Contrib. Geophys. Geod., 47, 201–229, DOI: 10.1515/congeo-2017-0011.CrossRefGoogle Scholar
  24. Jekeli C., 2012. Omission error, data requirements, and the fractal dimension of the geoid. In: Sneeuw N., Novák P., Crespi M. and Sansò F., (Eds), VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 137. Springer-Verlag, Berlin, Heidelberg, Germany, 181–187, DOI: 10.1007/978-3-642-22078-4_27.CrossRefGoogle Scholar
  25. Jekeli C., Yang H. and Kwon J., 2009. Using gravity and topography-implied anomalies to assess data requirements for precise geoid computation. J. Geodesy, 83, 1193–1202, DOI: 10.1007 /s00190-009-0337-y.CrossRefGoogle Scholar
  26. Kearsley A.H.W., 1986. Data requirements for determining precise relative geoid heights from gravimetry. J. Geophys. Res.-Solid Earth, 91, 9193–9201, DOI: 10.1029/JB091iB09p09193.CrossRefGoogle Scholar
  27. Kiamehr R. and Sjöberg L.E., 2005. Effect of the SRTM global DEM on the determination of a high-resolution geoid model: a case study in Iran. J. Geodesy, 79, 540–551, DOI: 10.1007 /s00190-005-0006-8.CrossRefGoogle Scholar
  28. Kingdon R. and Vaníček P., 2011. Poisson downward continuation solution by the Jacobi method. J. Geod. Sci., 1, 74–81, DOI: 10.2478/v10156-010-0009-0.Google Scholar
  29. MacMillan W.D., 1930. Theoretical Mechanics, Vol. 2: The Theory of the Potential. McGraw-Hill, New York.Google Scholar
  30. Mahbuby H., Safari A. and Foroughi I., 2017. Local gravity field modeling using spherical radial basis functions and a genetic algorithm. C. R. Geosci., 349, 106–113, DOI: 10.1016 /j.crte.2017.03.001.CrossRefGoogle Scholar
  31. Martinec Z., 1996. Stability investigations of a discrete downward continuation problem for geoid determination in the Canadian Rocky Mountains. J. Geodesy, 70, 805–828, DOI: 10.1007 /bf00867158.CrossRefGoogle Scholar
  32. Martinec Z. and Vaníček P., 1994. The indirect effect of Stokes-Helmert technique for a spherical approximation of the geoid. Manuscr. Geod., 19, 213–219.Google Scholar
  33. Najafi-Alamdari M., 1996. Contributions towards the Computation of a Precise Regional Geoid. PhD Thesis, University of New Brunswick, Fredericton, NB, Canada.Google Scholar
  34. Najafi-Alamdari M., Vaníček P., Ong P. and Craymer M., 1999. Accuracy of a regional geoid. Geomatica, 53, 297–305.Google Scholar
  35. Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res.-Solid Earth, 117, B04406, DOI: 10.1029/2011JB008916.CrossRefGoogle Scholar
  36. Saadat A., Safari A. and Needell D., 2018. IRG2016: RBF-based regional geoid model of Iran. Stud. Geophys. Geod., 62, 380–407, DOI: 10.1007/s11200-016-0679-x.CrossRefGoogle Scholar
  37. Safari A., Ardalan A.A. and Grafarend E.W., 2005. A new ellipsoidal gravimetric, satellite altimetry and astronomic boundary value problem, a case study: The geoid of Iran. J. Geodyn., 39, 545–568, DOI: 10.1016/j.jog.2005.04.009.CrossRefGoogle Scholar
  38. Saleh J., Li X., Wang Y.M., Roman D.R. and Smith D.A., 2013. Error analysis of the NGS’ surface gravity database. J. Geodesy, 87, 203–221, DOI: 10.1007/s00190-012-0589-9.CrossRefGoogle Scholar
  39. Shahbazi A., Safari A., Foroughi I. and Tenzer R., 2016. A numerically efficient technique of regional gravity field modeling using Radial Basis Functions. C. R. Geosci., 348, 99–105, DOI: 10.1016/j.crte.2015.08.003.CrossRefGoogle Scholar
  40. Sjöberg L., 1995. On the quasigeoid to geoid separation. Manuscr. Geod., 20, 182–192.Google Scholar
  41. Stokes G.G., 1849. On the Variation of Gravity at the Surface of the Earth. Cambridge University Press, Cambridge, U.K.Google Scholar
  42. Vaníček P., Huang J., Novák P., Pagiatakis S., Veronneau M., Martinec Z. and Featherstone W., 1999. Determination of the boundary values for the Stokes-Helmert problem. J. Geodesy, 73, 180–192, DOI: 10.1007/s001900050235.CrossRefGoogle Scholar
  43. Vaníček P., Kingdon R., Kuhn M., Ellmann A., Featherstone W.E., Santos M.C., Martinec Z., Hirt C. and Avalos-Naranjo D., 2013. Testing Stokes-Helmert geoid model computation on a synthetic gravity field: experiences and shortcomings. Stud. Geophys. Geod., 57, 369–400, DOI: 10.1007/s11200-012-0270-z.CrossRefGoogle Scholar
  44. Vaníček P. and Kleusberg A., 1987. The Canadian geoid - Stokesian approach. Manuscr. Geod., 12, 86–98.Google Scholar
  45. Vaníček P., Novák P., Sheng M., Kingdon R., Janák J., Foroughi I., Martinec Z. and Santos M., 2017. Does Poisson’s downward continuation give physically meaningful results? Stud. Geophys. Geod., 61, 412–428, DOI: 10.1007/s11200-016-1167-z.CrossRefGoogle Scholar
  46. Vaníček P., Sun W., Ong P., Martinec Z., Najafi M., Vajda P. and Ter Horst B., 1996. Downward continuation of Helmert’s gravity. J. Geodesy, 71, 21–34, DOI: 10.1007/s001900050072.CrossRefGoogle Scholar
  47. Vaníček P., Tenzer R., Sjöberg L.E., Martinec Z. and Featherstone W.E., 2004. New views of the spherical Bouguer gravity anomaly. Geophys. J. Int., 159, 460–472, DOI: 10.1111/j.1365-246X.2004.02435.xCrossRefGoogle Scholar
  48. Weber G. and Zomorrodian H., 1988. Regional geopotential model improvement for the Iranian geoid determination. Bull. Geod., 62, 125–141, DOI: 10.1007/BF02519221.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2019

Authors and Affiliations

  1. 1.Department of Civil EngineeringShahrood University of TechnologyShahroodIran
  2. 2.Department of Geodesy and GeomaticsUniversity of New BrunswickFrederictonCanada
  3. 3.New Technologies for the Information Society, Faculty of Applied SciencesUniversity of West BohemiaPlzeňCzech Republic

Personalised recommendations