Identifying pedogenic magnetic minerals in loess from China and Siberia using isothermal remanent magnetization acquisition curves

  • Zhijun Le
  • Jiasheng Chen
  • Xiuming LiuEmail author


Aeolian loess is carried by wind and undergoes pedogenesis after deposition. Therefore, both detrital components from the source region and soil pedogenic components contribute to the magnetic properties of the loess. The pedogenic component can be identified by analyzing the coercivity spectra of loess with different degrees of pedogenesis. We used isothermal remanent magnetization acquisition curves to analyze the coercivity spectra of loess in China and Siberia and defined the low (<30 mT), medium (60–100 mT) and high (>100 mT) coercivity components, i.e., components 1, 2, and 3, respectively. In the arid region of Xinjiang, Northwest China, the Bole section, with negligible soil development has loess with only component 2 centered at ∼80 mT. In semiarid central China, the Xifeng section has both loess and paleosols with three coercivity components centered at ∼26 mT, ∼82 mT, and ∼960 mT. Component 1 has a pedogenic origin, and the remanence contribution increases in a positive linear relationship with the intensity of pedogenesis. In the humid region of Siberia, the Kurtak section has three coercivity components are centered at ∼23 mT, ∼78 mT, and ∼1014 mT. The remanence contribution of component 1 shows a low correlation with the intensity of pedogenesis. Component 3 is characterized by high-coercivity minerals and its remanence contribution is related to the intensity of pedogenesis. The soil development in the semi-arid Xifeng section tends to produce massive fine-grained ferromagnetic minerals, so the remanence contribution of component 1 is positively correlated with the intensity of pedogenesis. The humid pedogenic environment of the Kurtak section is prone to form high-coercivity minerals and destroys fine-grained ferromagnetic minerals, so the remanence contribution of component 3 increases with the degree of pedogenesis.


IRM loess-paleosol magnetic signal remanence coercivity pedogenic component 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Begét J.E., Stone D.B. and Hawkins D.B., 1990. Paleoclimatic forcing of magnetic susceptibility variations in Alaskan loess during the late Quaternary. Geology., 18, 40–43.CrossRefGoogle Scholar
  2. Chen J., Ji J., Balsam W., Chen Y., Liu L. and An Z., 2002. Characterization of the Chinese loess–paleosol stratigraphy by whiteness measurement. Palaeogeogr. Palaeoclimatol. Palaeoecol., 183, 287–297.CrossRefGoogle Scholar
  3. Chlachula J., Rutter N.W. and Evans M.E., 1997. A late Quaternary loess-paleosol record at Kurtak, southern Siberia. Can. J. Earth Sci., 34, 679–686.CrossRefGoogle Scholar
  4. Deng C.L., Shaw J., Liu Q.S., Pan Y.X. and Zhu R.X., 2006. Mineral magnetic variation of the Jingbian loess/paleosol sequence in the northern Loess Plateau of China: Implications for Quaternary development of Asian aridification and cooling. Earth Planet. Sci. Lett., 241, 248–259.CrossRefGoogle Scholar
  5. Deng C.L., Vidic N.J., Verosub K.L., Singer M.J., Liu Q.S., Shaw J. and Zhu R.X., 2005. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on longterm climatic variability. J. Geophys. Res.-Solid Earth, 110, 767–782.CrossRefGoogle Scholar
  6. Deng C.L., Yuan B.Y., Zhu R.X., Verosub K.L., Singer M.J. and Vidic N.J., 2000. Magnetic susceptibility of Holocene loess-black loam sequence from Jiaodao, Shaanxi before and after citrate-bicarbonate-dithionite. Chin. J. Geophys., 43(04), 505–514 (in Chinese).CrossRefGoogle Scholar
  7. Deng C.L., Zhu R.X., Verosub K.L., Singer M.J. and Vidic N.J., 2004. Mineral magnetic properties of loess/paleosol couplets of the central loess plateau of China over the last 1.2 Myr. J. Geophys. Res.-Solid Earth, 109, 241–262.CrossRefGoogle Scholar
  8. Ding Z.L., Xiong S.F., Sun J.M., Yang S.L., Gu Z.Y. and Liu T.S., 1999. Pedostratigraphy and paleomagnetism of a ∼7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, northcentral China and the implications for paleomonsoon evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol., 152, 49–66.CrossRefGoogle Scholar
  9. Dunlop D. and Özdemir O., 1997. Rock Magnetism–Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  10. Dunlop D.J., 1995. Magnetism in rocks. J. Geophys. Res.-Solid Earth, 100, 2161–2174.CrossRefGoogle Scholar
  11. Egli R., 2004. Characterization of individual rock magnetic components by analysis of remanence curves. 1. Unmixing natural sediments. Stud. Geophys. Geod., 48, 391–446.CrossRefGoogle Scholar
  12. Egli R., 2004. Characterization of individual rock magnetic components by analysis of remanence curves. 2. Fundamental properties of coercivity distributions. Phys. Chem. Earth., 29, 851–867.Google Scholar
  13. Evans M.E., 2001. Magnetoclimatology of aeolian sediments. Geophys. J. Int., 144, 495–497.CrossRefGoogle Scholar
  14. Evans M.E., Rutter N.W., Catto N., Chlachula J. and Nyvlt D., 2003. Magnetoclimatology: Teleconnection between the Siberian loess record and North Atlantic Heinrich events. Geology, 31, 537–540.CrossRefGoogle Scholar
  15. Eyre J.K., 1996. The application of high resolution IRM acquisition to the discrimination of remanence carriers in Chinese loess. Stud. Geophys. Geod., 40, 234–242.CrossRefGoogle Scholar
  16. Fine P., Verosub K.L. and Singer M.J., 1995. Pedogenic and lithogenic contributions to the magnetic susceptibility record of the Chinese loess/palaeosol sequence. Geophys. J. Int., 122, 97–107.CrossRefGoogle Scholar
  17. Florindo F., Zhu R., Guo B., Yue L., Pan Y. and Speranza F., 1999. Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese Loess Plateau. J. Geophys. Res.-Solid Earth, 104, 645–659.CrossRefGoogle Scholar
  18. Geiss C.E. and Zanner C.W., 2006. How abundant is pedogenic magnetite? Abundance and grain size estimates for loessic soils based on rock magnetic analyses. J. Geophys. Res.-Solid Earth, 111, B12S21.CrossRefGoogle Scholar
  19. Geiss C.E., Egli R. and Zanner C.W., 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. J. Geophys. Res. -Solid Earth, 113, B11102.CrossRefGoogle Scholar
  20. Guo B., Zhu R.X., Roberts A.P. and Florindo F., 2001. Lack of correlation between paleoprecipitation and magnetic susceptibility of Chinese loess/paleosol sequences. Geophys. Res.Lett., 28, 4259–4262.CrossRefGoogle Scholar
  21. Guo Z.T., Ruddiman W.F. and Hao Q.Z., 2002. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416(6877), 159–163.CrossRefGoogle Scholar
  22. Heller F. and Evans M.E., 1995. Loess magnetism. Rev. Geophys., 33, 211–240.CrossRefGoogle Scholar
  23. Heslop D. and Dillon M., 2007. Unmixing magnetic remanence curves without a priori knowledge. Geophys. J. Int., 170, 556–566.Google Scholar
  24. Heslop D., Mcintosh G. and Dekkers M.J., 2004. Using time- and temperature-dependent Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int., 157, 55–63.CrossRefGoogle Scholar
  25. Heslop D., Dekkers M.J., Kruiver P.P. and Van Oorschot I.H.M., 2002. Analysis of isothermal remanent magnetization acquisition curves using the expectation-maximization algorithm. Geophys. J. Int., 148, 58–64.CrossRefGoogle Scholar
  26. Hu P., Liu Q., Torrent J., Barron V. and Jin C., 2013. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth Planet. Sci. Lett., 369, 271–283.CrossRefGoogle Scholar
  27. Hunt C.P., Singer M.J., Kletetschka G., Tenpas J. and Verosub K.L., 1995. Effect of citratebicarbonate- dithionite treatment on fine-grained magnetite and maghemite. Earth Planet. Sci. Lett., 130, 87–94.CrossRefGoogle Scholar
  28. Hyland E.G., Sheldon N.D., Voo R.V.D., Badgley C. and Abrajevitch A., 2015. A new paleoprecipitation proxy based on soil magnetic properties: implications for expanding paleoclimate reconstructions. Geol. Soc. Am. Bull., 127, 975–981.Google Scholar
  29. Jia J., Xia D., Wang B., Wei H. and Liu X., 2012. Magnetic investigation of Late Quaternary loess deposition, Ili area, China. Quat. Int., 250, 84–92.CrossRefGoogle Scholar
  30. Just J., Dekkers M.J., Dobeneck T., Hoesel A. and Bickert T., 2012. Signatures and significance of aeolian, fluvial, bacterial and diagenetic magnetic mineral fractions in Late Quaternary marine sediments off Gambia, NW Africa. Geochem. Geophys. Geosyst., 13, Q0AO02.Google Scholar
  31. Kravchinsky V.A., Zykina V.S. and Zykin V.S., 2008. Magnetic indicator of global paleoclimate cycles in Siberian loess–paleosol sequences. Earth Planet. Sci. Lett., 265, 498–514.CrossRefGoogle Scholar
  32. Kruiver P.P. and Passier H.F., 2001. Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio. Geochem. Geophys. Geosyst., 2, 1525–2027.CrossRefGoogle Scholar
  33. Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett., 189, 269–276.CrossRefGoogle Scholar
  34. Lü B., Liu X.M., Zhao G.Y., Ma M.M., Chen Q. and Chen J.S., 2012. Rock magnetic properties of Bole loess in Xinjiang and its environmental significance. J. Lanzhou Univ. Nat. Sci., 48(5), 1–8 (in Chinese).Google Scholar
  35. Lü B., Liu X.M., Chen Q., Zhao G.Y., Chen J.S., Mao X.G. and Guo X.L., 2012. Effect of CBD treatment on magnetic minerals of natural samples. Chin. J. Geophys., 55, 3077–3087 (in Chinese).Google Scholar
  36. Li X., Zhou J. and Dodson J., 2003. The vegetation characteristics of the ‘Yuan’ area at Yaoxian on the Loess Plateau in China over the last 12 000 years. Rev. Palaeobot. Palynology, 124, 1–7.CrossRefGoogle Scholar
  37. Liu Q.S., Banerjee S.K., Jackson M.J., Deng C.L., Pan Y.X. and Zhu R.X., 2005. Inter-profile correlation of the Chinese loess/paleosol sequences during Marine Oxygen Isotope Stage 5 and indications of pedogenesis. Quat. Sci. Rev., 24, 195–210.CrossRefGoogle Scholar
  38. Liu Q.S., Banerjee S.K., Jackson M.J., Zhu R. and Pan Y., 2002. A new method in mineral magnetism for the separation of weak antiferromagnetic signal from a strong ferrimagnetic background. Geophys. Res. Lett., 29, 1565.CrossRefGoogle Scholar
  39. Liu Q.S., Jackson M.J., Banerjee S.K., Maher B.A., Deng C.L., Pan Y.X. and Zhu R.X., 2004. Mechanism of the magnetic susceptibility enhancements of the Chinese loess. J. Geophys. Res., 109, B12107.CrossRefGoogle Scholar
  40. Liu Q.S., Jackson M.J., Yu Y., Chen F., Deng C. and Zhu R., 2004. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophys. Res. Lett., 312, L22603.Google Scholar
  41. Liu Q.S., Torrent J., Maher B.A., Yu Y., Deng C.L., Zhu R.X. and Zhao X.X., 2005. Quantifying grain size distribution of pedogenic magnetic particles in Chinese loess and its significance for pedogenesis. J. Geophys. Res.-Solid Earth, 110, B11102.Google Scholar
  42. Liu T.S., 1985. Loess and the Environment. Science Press, Beijing, China (in Chinese).Google Scholar
  43. Liu X.M., Liu T.S., Xia D.S., Hesse P., Chlachula J. and Wang G., 2007. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess. Sci. China Ser. D: Earth Sci., 37(10), 1382–1391 (in Chinese).CrossRefGoogle Scholar
  44. Liu X.M., Shaw J., Liu T.S., Heller F. and Yuan B., 1992. Magnetic mineralogy of Chinese loess and its significance. Geophys. J. Int., 108, 301–308.CrossRefGoogle Scholar
  45. Liu X.M., Xia D.S., Liu T.S., Ding Z.L., Chen F.H. and Begét J.E., 2007. Discussion on two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese loess. Quat. Sci., 27, 210–220 (in Chinese).Google Scholar
  46. Maher B.A., 1998. Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeogr. Palaeoclimatol. Palaeoecol., 137, 25–54.CrossRefGoogle Scholar
  47. Maxbauer D.P., Feinberg J.M. and Fox D.L., 2016. Magnetic mineral assemblages in soils and paleosols as the basis for paleoprecipitation proxies: A review of magnetic methods and challenges. Earth Sci. Rev., 155, 28–48.CrossRefGoogle Scholar
  48. Mcintosh G., Rolph T.C., Shaw J. and Dagley P., 1996. A detailed record of normal-reversedpolarity transition obtained from a thick loess sequence at Jiuzhoutai, near Lanzhou, China. Geophys. J. Int., 127, 651–664.CrossRefGoogle Scholar
  49. Nie J., Zhang R., Necula C., Heslop D., Liu Q., Gong L. and Banerjee S., 2014. Late Miocene-Early Pleistocene paleoclimate history of the Chinese Loess Plateau revealed by remanence unmixing. Geophys. Res. Lett., 41(6), 2163–2168.CrossRefGoogle Scholar
  50. Pelánková B., Kuneš P., Chytrý M., Jankovská V., Ermakov N. and Svobodová-Svitavská H., 2008. The relationships of modern pollen spectra to vegetation and climate along a steppe-foresttundra transition in southern Siberia, explored by decision trees. Holocene, 18, 1259–1271.CrossRefGoogle Scholar
  51. Reynolds R.L. and King J.W., 1995. Magnetic records of climate change. Rev. Geophys., 33(S1), 101–110.CrossRefGoogle Scholar
  52. Robertson D.J. and France D.E., 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetisation acquisition curves. Phys. Earth Planet. Inter., 82, 223–234.CrossRefGoogle Scholar
  53. Singer M.J., Fine P., Verosub K.L. and Chadwick O.A., 1992. Time dependence of magnetic susceptibility of soil chronosequences on the California coast. Quat. Res., 37, 323–332.CrossRefGoogle Scholar
  54. Song Y.G., Shi Z.T., Fang X.M., Nie J.S., Naoto I., Qiang X.K. and Wang X.L., 2010. Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau. Sci. China Ser. D: Earth Sci., 40(1), 61–72 (in Chinese).Google Scholar
  55. Spassov S., Heller F., Kretzschmar R., Evans M.E., Yue L.P. and Nourgaliev D.K., 2003. Detrital and pedogenic magnetic mineral phases in the loess/palaeosol sequence at Lingtai (Central Chinese Loess Plateau). Phys. Earth Planet. Inter., 140, 255–275.CrossRefGoogle Scholar
  56. Verosub K.L., Fine P., Singer M.J. and Tenpas J., 1993. Pedogenesis and paleoclimate - interpretation of the magnetic susceptibility record of Chinese loess-paleosol sequences. Geology, 21, 1011–1014.CrossRefGoogle Scholar
  57. Wang W., Feng Z., Ran M. and Zhang C., 2013. Holocene climate and vegetation changes inferred from pollen records of Lake Aibi, northern Xinjiang, China: A potential contribution to understanding of Holocene climate pattern in East-central Asia. Quat. Int., 311, 54–62.CrossRefGoogle Scholar
  58. Zander A., Frechen M., Zykina V. and Boenigk W., 2003. Luminescence chronology of the Upper Pleistocene loess record at Kurtak in Middle Siberia. Quat. Sci. Rev., 22, 999–1010.CrossRefGoogle Scholar
  59. Zhou L.P., Oldfield F., Wintle A.G., Robinson S.G. and Wang J.T., 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature, 346(6286), 737–739.CrossRefGoogle Scholar
  60. Zhu R.X., Matasova G., Kazansky A., Zykina V. and Sun J.M., 2003. Rock magnetic record of the last glacial–interglacial cycle from the Kurtak loess section, southern Siberia. Geophys. J. Int., 152, 335–343.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2019

Authors and Affiliations

  1. 1.Key Laboratory for Subtropical Mountain Ecology, College of Geographical SciencesFujian Normal UniversityFuzhouChina
  2. 2.Institute of GeographyFujian Normal UniversityFuzhouChina
  3. 3.Department of Environment and GeographyMacquarie UniversitySydneyAustralia

Personalised recommendations