Advertisement

Comparison of two different approaches for computing the gravitational effect of a tesseroid

  • Anna Maria MarottaEmail author
  • Kurt SeitzEmail author
  • Riccardo BarzaghiEmail author
  • Thomas Grombein
  • Bernhard Heck
Article
  • 6 Downloads

Abstract

Forward modelling in the space domain is a very important task in geodesy and other geosciences. From topographical or isostatic information in the form of digital terrain model (DTM) and density model, the effects of these parameters or their derivatives on the gravity potential can be evaluated for different applications. In most cases, height or height-layer models are in use, which are gridded with respect to spherical coordinates. This holds for global as well as regional or even local applications. The definition of the spherical gridlines leads immediately to the spherical volume element, that is, the tesseroid. Only in the specific case that the observation point is located on the symmetry axis of the spherical coordinate system does the Newton integral have a closed analytical solution. More specifically, the effect of a tesseroid can be determined by evaluating the analytical solution of a segment of a spherical zonal band. To apply this aspect in practice, the DTM must be transformed into the local spherical azimuthal system of the observation point (UNIPOL approach). In the general case, the Newton integral can be solved, for example, using a Taylor series expansion of the integral kernel and a subsequently applied term-wise integration (GIK approach). Within this contribution, the two fundamentally different tesseroid approaches, namely, the GIK and the UNIPOL approach are compared. This comparison is performed, in particular, with regard to the required computational time and the approximation error under different test scenarios. The numerical studies show that both approaches are equivalent in terms of accuracy for both the gravitational potential and gravity; however, the UNIPOL approach is more time consuming because, for each observation point, the whole DTM must be transformed. Small numerical differences exist between the compared approaches for special constellations regarding the source point and the observation point.

Keywords

tesseroid gravity forward modelling Newton integral 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chen C., Ren Z., Pan K., Tang J., Kalscheuer T, Maurer H., Sun Y. and Li Y., 2018. Exact solutions of the vertical gravitational anomaly for a polyhedral prism with vertical polynomial density contrast of arbitrary orders. Geophys. J. Int., 214, 2115–2132, DOI:  https://doi.org/10.1093/gji/ggy250.CrossRefGoogle Scholar
  2. D’Urso M.G., 2013. On the evaluation of the gravity effects of polyhedral bodies and a consistent treatment of related singularities. J. Geodesy, 87, 239–252, DOI:  https://doi.org/10.1007/s00190-012-0592-1.CrossRefGoogle Scholar
  3. D’Urso M.G., 2014. Analytical computation of gravity effects for polyhedral bodies. J. Geodesy, 88, 13–29, DOI:  https://doi.org/10.1007/s00190-013-0664-x.CrossRefGoogle Scholar
  4. Grombein T., Seitz K. and Heck B., 2013. Optimized formulas for the gravitational field of a tesseroid. J. Geodesy, 87, 645–660, DOI:  https://doi.org/10.1007/s00190-013-0636-1.CrossRefGoogle Scholar
  5. Grombein T., Seitz K. and Heck B., 2014. Incorporating topographic-isostatic information into GOCE gravity gradient processing. In: Flechtner F., Sneeuw N. and Schuh W.-D. (Eds), Observation of the System Earth from Space — CHAMP, GRACE, GOCE and future missions: GEOTECHNOLOGIEN Science Report No. 20. Springer, Berlin Heidelberg, 95–101, doi: https://doi.org/10.1007/978-3-642-32135-112.CrossRefGoogle Scholar
  6. Grüninger W., 1990. Zur topographisch-isostatischen Reduktion der Schwere. PhD Thesis. Universität Karlsruhe, Karlsruhe, Germany (in German).Google Scholar
  7. Hamayun, Prutkin I. and Tenzer R., 2009. The optimum expression for the gravitational potential of polyhedral bodies having a linearly varying density distribution. J. Geodesy, 83, 1163–1170, DOI:  https://doi.org/10.1007/s00190-009-0334-1.CrossRefGoogle Scholar
  8. Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136, DOI:  https://doi.org/10.1007/s00190-006-0094-0.CrossRefGoogle Scholar
  9. Le Fehr T.R., 1991. An exact solution for the gravity curvature (Bullard B) correction. Geophysics, 56, 1179–1184.CrossRefGoogle Scholar
  10. Lin M. and Denker H., 2019. On the computation of gravitational effects for tesseroids with constant and linearly varying density. J. Geodesy, 93, 723–747, DOI:  https://doi.org/10.1007/s00190-018-1193-4.CrossRefGoogle Scholar
  11. Mac Millan W.D., 1958. Theoretical Mechanics. Vol. 2. The Theory of the Potential. Dover, New York.Google Scholar
  12. Mader K., 1951. Das Newtonsche Raumpotential prismatischer Körper und seine Ableitungen bis zur dritten Ordnung. Österreichische Zeitschrift für Vermessungswesen, 11, Special Issue.Google Scholar
  13. Marotta A.M. and Barzaghi R., 2017. A new methodology to compute the gravitational contribution of a spherical tesseroid based on the analytical solution of a sector of a spherical zonal band. J. Geodesy, 91, 1207–1224, DOI:  https://doi.org/10.1007/s00190-017-1018-x.CrossRefGoogle Scholar
  14. Martinec Z., 1998. Boundary-Value Problems for Gravimetric Determination of a Precise Geoid. Lecture Notes in Earth Sciences, 73. Springer, Berlin, Germany.Google Scholar
  15. Moritz H., 1980. Advanced Physical Geodesy. Herbert Wichmann Verlag, Karlsruhe, Germany.Google Scholar
  16. Nagy D., 1966. The gravitational attraction of a right rectangular prism. Geophysics, 31, 362–371, DOI:  https://doi.org/10.1190/1.1439779.CrossRefGoogle Scholar
  17. Nagy D., Papp G. and Benedek J., 2000. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560, DOI:  https://doi.org/10.1007/s001900000116.CrossRefGoogle Scholar
  18. Nagy D., Papp G. and Benedek J., 2002. Corrections to The gravitational potential and its derivatives for the prism. J. Geodesy, 76, 475, DOI:  https://doi.org/10.1007/s00190-002-0264-7.CrossRefGoogle Scholar
  19. Ren Z., Chen C., Pan K., Kalscheuer T., Maurer H. and Tang J., 2017. Gravity anomalies of arbitrary 3D polyhedral bodies with horizontal and vertical mass contrasts. Surv. Geophys., 38, 479–502, DOI:  https://doi.org/10.1007/s10712-016-9395-x.CrossRefGoogle Scholar
  20. Ren Z., Zhong Y., Chen C., Tang J., Kalscheuer T., Maurer H. and Li Y., 2018. Gravity gradient tensor of arbitrary 3D polyhedral bodies with up to third-order polynomial horizontal and vertical mass contrasts. Surv. Geophys., 39, 901–935, DOI:  https://doi.org/10.1007/s10712-016-9395-x.CrossRefGoogle Scholar
  21. Shen W.-B. and Deng X.-L., 2016. Evaluation of the fourth-order tesseroid formula and new combination approach to precisely determine gravitational potential. Stud. Geophys. Geod., 60, 583–607, DOI:  https://doi.org/10.1007/s11200-016-0402-y.CrossRefGoogle Scholar
  22. Torge W. and Müller J., 2012. Geodesy. 4th Edition. de Gruyter, Berlin, Germany.CrossRefGoogle Scholar
  23. Tsoulis D., Jamet O., Verdun J. and Gonindard N., 2009. Recursive algorithms for the computation of the potential harmonic coefficients of a constant density polyhedron. J. Geodesy, 83, 925–942, DOI:  https://doi.org/10.1007/s00190-009-0310-9.CrossRefGoogle Scholar
  24. Uieda L., Barbosa V. C. F. and Braitenberg C., 2015. Tesseroids: Forward-modeling gravitational fields in spherical coordinates. Geophysics. 81(5), F41–F48, doi: https://doi.org/10.1190/geo2015-0204.1.CrossRefGoogle Scholar
  25. Vaníček P., Novák P. and Martinec Z., 2001. Geoid, topography, and the bouguer plate or shell. J. Geodesy, 75, 210–215, DOI:  https://doi.org/10.1007/s001900100165.CrossRefGoogle Scholar
  26. Vaníček P., Tenzer R., Sjoberg L., Martinec Z. and Featherstone W., 2004. New views of the spherical bouguer gravity anomaly. Geophys. J. Int., 159, 460–472, DOI:  https://doi.org/10.1111/j.1365-246X.2004.02435.x.CrossRefGoogle Scholar
  27. Wessel P., Smith W.H.F., Scharroo R., Luis J.F. and Wobbe F., 2013. Generic Mapping Tools: Improved version released. Eos Trans. AGU, 409–410, DOI:  https://doi.org/10.1002/2013EO450001.
  28. Wild-Pfeiffer F., 2008. A comparison of different mass elements for use in gravity gradiometry. J. Geodesy, 82, 637–653, DOI:  https://doi.org/10.1007/s00190-008-0219-8.CrossRefGoogle Scholar
  29. Zhang Y. and Chen C., 2018. Forward calculation of gravity and its gradient using polyhedral representation of density interfaces: an application of spherical or ellipsoidal topographic gravity effect. J. Geodesy, 92, 205–218, DOI:  https://doi.org/10.1007/s00190-017-1057-3.CrossRefGoogle Scholar

Copyright information

© Inst. Geophys. CAS, Prague 2019

Authors and Affiliations

  1. 1.Department of Earth Sciences ‘Ardito Desio’University of MilanoMilanoItaly
  2. 2.Geodetic InstituteKarlsruhe Institute of Technology (KIT)KarlsruheGermany
  3. 3.DICAPolitecnico di MilanoMilanoItaly

Personalised recommendations