Advertisement

Cause of scale inconsistencies in DORIS time series

  • Petr Štěpánek
  • Vratislav Filler
Article
  • 2 Downloads

Abstract

In this paper we analyze the scale of the DORIS (Doppler Orbitography and Radiopositioning Integrated by Satellite) solutions with respect to DORIS extension of the International Terrestrial Reference Frame (ITRF) for Precise Orbit Determination DPOD2014. The main goal is to explain the scale inconsistencies and to find the optimal solution reaching low-biased and consistent scale time series. Our analysis profits from 4 different strategies based only on the Geodetic Observatory Pecný analysis center solution, using DORIS exchange format data 2.2. A difference in the sequence of the solutions directly corresponds to one of the changes in the solution settings: data elevation dependent weighting, application of data validity indicators and application of phase center - reference point correction. We process multi-satellite and single-satellite solutions for the time period 2011.0–2017.0. Our analysis examines scale inconsistency issues in 2011/2012 and in 2015. The scale increment in 2011/2012 is explained as a result of the concurrence of changes in satellite constellation and change in the provider data validity standards for Cryosat-2 and Jason-2 satellites. The scale increment in 2015 is explained as the effect of change in the standards for phase center - reference center corrections for Saral, Jason-2 and Cryosat-2 satellites. Moreover, comparing the solutions with and without elevation dependent data downweighting using the same elevation cutoff (10°), we found a significant reduction of scale bias and scale variation applying the data downweighting. The data downweighting improved also the station positioning repeatability. We demonstrate that the solution, which is completely free from the additional data associated with observations in DORIS exchange format 2.2 and includes the data downweighting law, eventuates in a consistent scale time series with the lowest offset with respect to DPOD2014 (version 1.0) (12.7 ± 2.3 mm for 2011.0–2017.0). The only remaining scale issue is the part of 2011/2012 increment of around 5 mm, explained by a change in the DORIS satellite constellation.

Keywords

DORIS IDS scale ITRF 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z., Rebischung P., Métivier L. and Collilieux X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res.: Solid Earth. 121, 6109–6131.CrossRefGoogle Scholar
  2. Boehm J., Niell A., Tregoning P. and Schuh, H., 2006. Global Mapping Function (GMF): A new empirical mapping fiction based on numeric weather model data. Geophys. Res. Lett., 33, L07304, DOI: 10.1029/2005GL025546.CrossRefGoogle Scholar
  3. Capdeville H., Štepánek P., Hecker L. and Lemoine J.M., 2016. Update of the corrective model for Jason-1 DORIS data in relation to the South Atlantic Anomaly and a corrective model for SPOT-5. Adv. Space Res., 58, 2628–2650CrossRefGoogle Scholar
  4. Capdeville H., Moreaux G. and Lemoine, F.G., 2017. Characterization and Impact of DORIS scale variations. IDS CCIERS Unified Analysis Workshop, Paris 10–12 July 2017, https://idsdoris.org/images/documents/report/meetings/UAW2017-DorisScaleVariations-Capdeville.pdf.Google Scholar
  5. Cerri L., Berthias J.P., Bertiger W.I., Haines B.J., Lemoine F.G., Mercier F., Ries J.C., Willis P. and Ziebart M., 2010. Precision orbit determination standards for the Jason series of altimeter mission. Mar. Geod., 33, 379–418.CrossRefGoogle Scholar
  6. Cerri L., Lemoine J.M., Mercier F., Zelensky N.P. and Lemoine F.G., 2013. DORIS-based point mascons for the long term stability of precise orbit solutions. Adv. Space Res., 52, 466–476.CrossRefGoogle Scholar
  7. Dach R., Hugentobler U., Fridez P. and Meindl M.,2007. Bernese GPS Software, Version 5.0. Astronomical Institute, University of Bern, Bern, Switzerland.Google Scholar
  8. Foerste C., Bruinsma S., Abrikosov O., Rudenko S., Lemoine J.M., Marty, J.C., Neumayer K.H. and Biancale R., 2016. EIGEN-6S4 A time-variable satellite-only gravity field model to d/o 300 based on LAGEOS, GRACE and GOCE data from the collaboration of GFZ Potsdam and GRGS Toulouse. GFZ Data Services, Potsdam, Germany, DOI: 10.5880/icgem.2016.008.Google Scholar
  9. Hedin A.E.,1987. MSIS-86 thermospheric model. J. Geophys. Res., 92(A5), 4649–4662.Google Scholar
  10. Knocke P.C., Ries J.C. and Tapley B.D, 1988. Earth radiation pressure effects on satellites. AIAA/AAS Astrodynamics Conference, Minneapolis, MN,Aug. 15–17, 1988, Technical Papers (A88-50352 21-13). American Institute of Aeronautics and Astronautics, Washington, DC,577–587.Google Scholar
  11. Kuzin S. and Tatevian S., 2016. DORIS data processing in the INASAN Analysis Center and the contribution to ITRF2014. Adv. Space Res., 58, 2561–2571.CrossRefGoogle Scholar
  12. Lemoine F.G., Chinn D.S., Zelensky N.P., Beall J.W. and Le Bail K., 2016. The development of the GSFCDORIS contribution to ITRF2014. Adv. Space Res., 58, 2520–2542.CrossRefGoogle Scholar
  13. Lemoine J.M., Capdeville H. and Soudarin L., 2016. Precise orbit determination and station position estimation using DORIS RINEX data. Adv. Space Res., 58, 2677–2690.CrossRefGoogle Scholar
  14. Letellier T., Lyard F. and Lefevre F., 2004. The New Global Tidal Solution: FES2004. Proceedings of the Ocean Surface Topography Science Team Meeting, St. Petersburg, FL,4–6.Google Scholar
  15. Mercier F., Cerri L. and Berthias J.P., 2010. Jason-2 DORIS phase measurement processing. Adv. Space Res., 45, 1441–1454.CrossRefGoogle Scholar
  16. Moreaux G., Lemoine F.G., Capdeville H., Kuzin S., Otten M., Štepánek P., Willis P. and Ferrage P., 2016. The international DORIS service contribution to the 2014 realization of the International Terrestrial Reference Frame. Adv. Space Res., 58, 2479–2504.CrossRefGoogle Scholar
  17. Moreaux G., Willis P., Lemoine F.G., Zelensky N., Couhert A., Lakbir H.A. and Ferrage P., 2016b. DPOD2014: a new DORIS extension of ITRF2014 for precise orbit determination. DORIS IDS Workshop, La Rochelle, 31 October - 1 November 2016, https://ids-doris.org/images/documents/report/ids_workshop_2016/IDS16_s2_Moreaux_DPOD2014.pdf.Google Scholar
  18. Moreaux G., 2017. Status of the combination center activities. IDS AWG Meeting, London 22–24 May 2017, https://ids-doris.org/images/documents/report/AWG201705/IDSAWG201705- Moreaux-CC_StatusReport.pdf.Google Scholar
  19. Otten M., Flohrer C., Springer T. and Dow J., 2010. DORIS processing at the European Space Observations Centre. Adv. Space Res., 46, 1606–1613.CrossRefGoogle Scholar
  20. Petit G. and Luzum B. (Eds.), 2010. IERS Conventions (2010). IERS Technical Note 36, IERS Convention Centre, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 179 pp., ISBN 3-89888-989-6.Google Scholar
  21. Soudarin L., Capdeville H. and Lemoine J.M., 2016. Activity of the CNES/CLS Analysis Center for the IDS contribution to ITRF2014. Adv. Space Res., 58, 2543–2560.CrossRefGoogle Scholar
  22. Standish E.M., 1998. JPL Planetary and Lunar Ephemerides. DE405/LE405, JPL IOM 312.F-98- 048.Google Scholar
  23. Štepánek P., Douša J., Filler V. and Hugentobler U., 2010. DORIS data analysis at Geodetic Observatory Pecny using single-satellite and multi-satellite geodetic solutions. Adv. Space Res., 46, 1578–1592.CrossRefGoogle Scholar
  24. Štepánek P., Filler V., Hugentobler U. and Douša J., 2010. DORIS at GOP, from pilot testing campaign to fully operational analysis center. Acta Geodyn. Geomater., 7, 49–60.Google Scholar
  25. Tourain C., Moreaux G., Auriol A. and Saunier J., 2016. DORIS starec ground antenna characterization and impact on positioning. Adv. Space Res., 58, 2707–2716.CrossRefGoogle Scholar
  26. Willis P., Fagard H., Ferrage P., Lemoine F.G., Noll C.E., Noomen R., Otten M., Ries J.C., Rothacher M., Soudarin L., Tavernier G. and Valette J.J., 2010. The International DORIS Service (IDS): toward maturity. Adv. Space Res., 45, 1408–1420.CrossRefGoogle Scholar
  27. Willis P., Gobinddass M.L., Garayt B. and Fagard H., 2012. Recent improvements in DORIS data processing in view of ITRF2008, the ignwd08 solution. In: Kenyon S., Pacino M. and Marti U., (Eds), Geodesy for Planet Earth. International Association of Geodesy Symposia. 136, 43–49, Springer-Verlag, Berlin, Germany, DOI: 10.1007/978-3-642-20338-1_6.CrossRefGoogle Scholar
  28. Willis P., Zelensky N.P., Ries, J., Soudarin L., Cerri L., Moreaux G., Lemoine F.G., Otten M., Argus D.F. and Heflin M.B., 2016. DPOD2008, a DORIS-oriented terrestrial reference frame for precise orbit determination. In: Rizos C. and Willis P., (Eds), IAG 150 Years. International Association of Geodesy Symposia. 143, 175–181, Springer-Verlag, Berlin, Germany, DOI: 10.1007/1345_2015_125.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2018

Authors and Affiliations

  1. 1.Research Institute of GeodesyTopography and CartographyZdibyCzech Republic

Personalised recommendations