Advertisement

Galerkin’s matrix for Neumann’s problem in the exterior of an oblate ellipsoid of revolution: gravity potential approximation by buried masses

  • Petr Holota
  • Otakar Nesvadba
Article
  • 4 Downloads

Abstract

The paper is motivated by the role of boundary value problems in Earth’s gravity field studies. The discussion focuses on Neumann’s problem formulated for the exterior of an oblate ellipsoid of revolution as this is considered a basis for an iterative solution of the linear gravimetric boundary value problem in the determination of the disturbing potential. The approach follows the concept of the weak solution and Galerkin’s approximations. The solution of the problem is approximated by linear combinations of basis functions with scalar coefficients. The construction of Galerkin’s matrix for basis functions generated by elementary potentials (point masses) is discussed. Ellipsoidal harmonics are used as a natural tool and the elementary potentials are expressed by means of series of ellipsoidal harmonics. The problem, however, is the summation of the series that represent the entries of Galerkin’s matrix. It is difficult to reduce the number of summation indices since in the ellipsoidal case there is no analogue to the addition theorem known for spherical harmonics. Therefore, the series representation of the entries is analyzed. Hypergeometric functions and series are used. Moreover, within some approximations the entries are split into parts. Some of the resulting series may be added relatively easily, apart from technical tricks. For the remaining series the summation is converted to elliptic integrals. The approach makes it possible to deduce a closed (though approximate) form representation of the entries in Galerkin’s matrix. The result rests on concepts and methods of mathematical analysis. In the paper it is confronted with a direct numerical approach applied for the implementation of Legendre’s functions. The computation of the entries is more demanding in this case, but conceptually it avoids approximations. Some specific features associated with function bases generated by elementary potentials in case of the ellipsoidal solution domain are discussed.

Keywords

Earth’s gravity field boundary value problems variational methods elementary potentials elliptic integrals 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aksenov E.P., 1986. Special Functions in Celestial Mechanics. Nauka Publishers, Moscow, Russia (in Russian).Google Scholar
  2. Anger G., 1976. Die Rolle der modernen Potentialtheorie in der Theorie der inversen Aufgabenstellungen. Gerlands Beiträge zur Geophysik, 85, 1–20 (in German).Google Scholar
  3. Antonov V.A., Timoshkova E.I. and Kholshevnikov K.V., 1983. On the possibility of geopotential representation by means of the point masses system on the basis of satellite observations. In: Holota P. (Ed), Proceedings of the Internationa Symposium “Figure of the Earth, the Moon and other Planets”, Prague, Sept. 20–25, 1982. Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech Republic, 291–304 (in Russian).Google Scholar
  4. Ballani L., Engels J. and Grafarend E., 1993. Global base functions for the mass density in the interior of a massive body (Earth). Manus. Geod., 18(2), 99–114.Google Scholar
  5. Balmino G., 1972. Representation of the Earth potential by buried masses. In: Henriksen S.W., Mancini A. and Chovitz B.H. (Eds), The Use of Artificial Satellites for Geodesy. Geophysical Monograph 15, American Geophysical Union, Washington, D.C.Google Scholar
  6. Barthelems F., 1986. Untersuchungen zur Approximation des äuβeren Gravitationsfeldes der Erde durch Punktmassen mit optimierten Positionen. Veröff. d. Zentralinstitut für Physik d. Erde, Nr. 92, Potsdam, Germany (in German).Google Scholar
  7. Bateman H. and Erdélyi A., 1953. Higher Transcendental Functions. Volume 1. McGraw-Hill Book Company, Inc., New York-Toronto-London.Google Scholar
  8. Carlson B.C., 1979. Computing elliptic integrals by duplication. Numer. Math., 33, 1–16.CrossRefGoogle Scholar
  9. Čuřík F., 1944. Mathematics. Technický průvodce, XLIX, No. 196. Česká matice technická, Prague, Czech Republic (in Czech).Google Scholar
  10. Čunderlík R., 2016. Determination of W0 from the GOCE measurements using the method of fundamental solutions. In: Sneeuw N., Novák P., Crespi M. and Sansò F. (Eds), VIII Hotine- Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 142. Springer Verlag, Heidelberg, Germany, 91–100.Google Scholar
  11. Freeden W., Gervens T. and Schreiner M., 1998. Constructive Approximation on the Sphere - with Applications to Geomathematics. Claredon Press, Oxford, U.K.Google Scholar
  12. Freeden W. and Michel V., 1999. Constructive approximation and numerical methods in geodetic research today - An attempt at a categorization based on an uncertainty principle. J. Geodesy, 73, 452–465.CrossRefGoogle Scholar
  13. Heikkinen M., 1981. Solving the Shape of the Earth by Using Digital Density Models. Report 81:2. The Finnish Geod. Inst., Helsinki, Finland.Google Scholar
  14. Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Company, San Francisco and London.Google Scholar
  15. Hobson E.W., 1931. The Theory of Spherical and Ellipsoidal Harmonics. Cambridge University Press, Cambridge, U.K.Google Scholar
  16. Hofmann-Wellenhof B. and Moritz H., 2005. Physical Geodesy. Springer, Wien-New York.Google Scholar
  17. Holota P., 1979. Representation of the Earth’s gravity field by the potential of point masses. Obs. Artif. Sat. Earth, No.18, Warszawa-Lodz, Poland, 159–169 (in Russian).Google Scholar
  18. Holota P., 1997. Coerciveness of the linear gravimetric boundary-value problem and a geometrical interpretation. J. Geodesy, 71, 640–651.CrossRefGoogle Scholar
  19. Holota P., 2000. Direct methods in physical geodesy. In: Schwarz K.P. (Ed.), Geodesy Beyond 2000. International Association of Geodesy Symposia, 121. Springer-Verlag, Berlin, Germany, 163–170.CrossRefGoogle Scholar
  20. Holota P., 2001. Variational methods in the recovery of the gravity field - Galerkin’s matrix for an ellipsoidal domain. In: Sideris M.G. (Ed.), Gravity, Geoid and Geodynamics 2000. International Association of Geodesy Symposia, 123, Springer-Verlag, Berlin, Germany, 277–283.CrossRefGoogle Scholar
  21. Holota P., 2003a. Variational methods in the representation of the gravitational potential. In: Schäfer U. (Ed.), Proceedings of the Workshop on Analytical Representation of Potential Field Anomalies for Europe (AROPA). Cahiers du Centre Européen de Géodynamique et de Séismologie, 20. Luxembourg, 3–11.Google Scholar
  22. Holota P., 2003b. Inertia of quadratic forms and general bases in geopotential approximations. In: Jekeli Ch. (Ed.), Proceedings of the Weikko A. Heiskanen Symposium in Geodesy. Laboratory for Space Geodesy and Remote Sensing Research, Ohio State University, Columbus, OH.Google Scholar
  23. Holota P., 2004. Some topics related to the solution of boundary-value problems in geodesy. In: Sansò F. (Ed.), V Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 127. Springer-Verlag, Berlin, Germany, 189–200.CrossRefGoogle Scholar
  24. Holota P., 2005. Successive approximations in the solution of weakly formulated geodetic boundary-value problem. In: Sansò F. (Ed.), A Window on the Future of Geodesy. International Association of Geodesy Symposia, 128. Springer-Verlag, Heidelberg, Germany, 452–458.CrossRefGoogle Scholar
  25. Holota P., 2011. Reproducing kernel and Galerkin’s matrix for the exterior of an ellipsoid: Application in gravity field studies. Stud. Geophys. Geod., 55, 397–413.CrossRefGoogle Scholar
  26. Holota P. and Nesvadba O., 2012. Method of successive approximations in solving geodetic boundary value problems: analysis and numerical experiments. In: Sneeuw N., Novák P. and Crespi M. (Eds), VII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 137. Springer-Verlag, Berlin, Germany, 189–198.CrossRefGoogle Scholar
  27. Holota P. and Nesvadba O., 2014. Reproducing kernel and Neumann’s function for the exterior of an oblate ellipsoid of revolution: application in gravity field studies. Stud. Geophys. Geod., 58, 505–535.CrossRefGoogle Scholar
  28. Hotine M., 1969. Mathematical Geodesy. ESSA Monographs, Washington, D.C.Google Scholar
  29. Ihde J., Schirmer U., Stefani F. and Töppe F., 1998. Geoid modelling with point masses. In: Vermeer M. and Ádám J. (Eds), Second Continental Workshop on the Geoid in Europe, Budapest, Hungary, March 10–14, 1998. Reports of the Finnish Geodetic Institute No. 98:4, Helsinki, Finland, 199–204.Google Scholar
  30. Jahnke E. and Emde F., 1945. Tables of Functions with Formulae and Curves. Dover Publications, Mineola, NY.Google Scholar
  31. Kautzleben H. and Barthelmes F., 1983. Point mass representation of the Earth’s gravity field. In: Holota P. (Ed), Proceedings of the Internationa Symposium “Figure of the Earth, the Moon and other Planets”, Prague, Sept. 20–25, 1982. Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech Republic, 307–313.Google Scholar
  32. Kellogg O.D., 1953. Foundations of Potential Theory. Dover Publications, Mineola, NY.Google Scholar
  33. Kratzer A. and Franz W., 1960. Transzendente Funktionen. Akademische Verlagsgesellschaft, Leipzig, Germany (in German).Google Scholar
  34. Landkov N.S., 1966. Fundamentals of Modern Potential Theory. Nauka Publishers, Moscow, Russia (in Russian).Google Scholar
  35. Lehmann R., 1992. Geoid computation in the Gulf of Bothnia by free-positioned point masses. In: Holota P. and Vermeer M. (Eds), First Continental Workshop on the Geoid in Europe: Towards a Precise Pan-European Reference Geoid for the Nineties, Prague, May 11–14, 1992. Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech Republic, 428–443, ISBN: 8090131921, 9788090131927.Google Scholar
  36. Lehmann R., 1993. The method of free-positioned point masses - geoid studies on the Gulf of Bothnia. Bull. Geod., 67, 31–40.CrossRefGoogle Scholar
  37. Lense J., 1950. Kugelfunktionen. Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, Germany (in German).Google Scholar
  38. Marchenko A.N., 1983. On the use of fundamental solutions of Laplace’s equation for the determination of the gravitational field and figure of the Earth. In: Holota P. (Ed.), Proceedings of International Symposium Figure of the Earth, the Moon and other Planets, Prague, Sept. 20–25, 1982. Research Institute of Geodesy, Topography and Cartography, Zdiby, Czech Republic, 317–328 (in Russian).Google Scholar
  39. Marchenko A.N., 1998. Parametrization of the Earth’s Gravity Field - Point and Line Singularities. Lviv Astronomical and Geodetic Society, Lviv, Ukraine.Google Scholar
  40. Michlin S.G., 1964. Variational Methods in Mathematical Physics. Pergamon Press, New York.Google Scholar
  41. Moritz H., 1980. Geodetic Reference System 1980. Bull. Geod., 54, 395–405.CrossRefGoogle Scholar
  42. Moritz H., 1992. Geodetic Reference System 1980. In: Tscherning C.C. (Ed.), The Geodesist’s Handbook 1992. Bull. Geod., 66, 187–192.Google Scholar
  43. Moritz H., 1990. The Figure of the Earth: Theoretical Geodesy and the Earth’s Interior. Herbert Wichmann Verlag, Karlsruhe, Germany.Google Scholar
  44. Nečas J., 1967. Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Éditions de l’Académie Tchécoslovaque des Sciences, Prague, Czech Republic (in French).Google Scholar
  45. Nesvadba O., 2009. Numerical problems in evaluating high degree and order associated Legendre functions. Geophys. Res. Abs., 11, EGU2009–1225 (https://doi.org/meetingorganizer.copernicus.org/EGU2009/EGU2009-1225.pdf). Google Scholar
  46. Nesvadba O., 2010. Reproducing kernels in harmonic spaces and their numerical implementation. Geophys. Res. Abs., 12, EGU2010–14298 (https://doi.org/meetingorganizer.copernicus.org/EGU2010/EGU2010-14298.pdf). Google Scholar
  47. Nesvadba O. and Holota P., 2016. An OpenCL implementation of ellipsoidal harmonics. In: Sneeuw N., Novák P., Crespi M. and Sansò F. (Eds), VIII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 142. Springer-Verlag, Berlin, Germany, 195–203.Google Scholar
  48. Nesvadba O., Holota P. and Klees R., 2007. A direct method and its numerical interpretation in the determination of the Earth’s gravity field from terrestrial data. In: Tregoning P. and Rizos C. (Eds), Dynamic Planet. International Association of Geodesy Symposia, 130. Springer-Verlag, Berlin, Germany, 370–376.CrossRefGoogle Scholar
  49. Pick M., Pícha J. and Vyskočil V., 1973. Theory of the Earth’s Gravity Field. Academia, Prague, Czech Republic (in Czech); English version published by Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.Google Scholar
  50. Prudnikov A.P., Brychkov Yu.A. and Marichev O.I., 1981. Integrals and Series, Elementary Functions. Nauka Publishers, Moscow, Russia (in Russian).Google Scholar
  51. Rektorys K., 1977. Variational Methods. Reidel Co., Dordrecht-Boston.Google Scholar
  52. Sansò F. and Tscherning C.C., 1989. The inverse gravimetric problem in gravity modelling. In: Kejlso E., Poder K. and Tscherning C.C. (Eds), Festschrift to Torben Krarup Geodaetisk Institut, Meddelelse No. 58, Copenhagen, Denmark, 299–334.Google Scholar
  53. Smirnov V.I., 1965. Lectures in Higher Mathematics. Vol. I. Nauka Publishers, Moscow, Russia (in Russian).Google Scholar
  54. Smirnov V.I., 1958. Lectures in Higher Mathematics. Vol. III, Part 2. Nauka Publishers, Moscow, Russia (in Russian).Google Scholar
  55. Stomeyer D. and Ballani, L., 1984. Uniqueness of the inverse gravimetric problem for point mass models. Manus. Geod., 9, 125–136.Google Scholar
  56. Schulze B.W., 1977. Interpretation of an inverse problem of geophysics by the potential theory. Gerlands Beiträge zur Geophysik, 86, 291–302.Google Scholar
  57. Schulze B.W. and Wildenhain G., 1977. Methoden der Potentialtheorie für elliptische Differentialgleichungen beliebiger Ordnung. Akademie-Verlag, Berlin, Germany (in German).CrossRefGoogle Scholar
  58. Taylor A.E., 1967. Introduction to Functional Analysis. Wiley & Sons Inc., New York.Google Scholar
  59. Weightman J.A., 1967. Gravity, geodesy and artificial satellites, a unified analytical approach. In: Veis G. (Ed.), Use of Artificial Satellites for Geodesy, 2. National Technical University, Athens, Greece, 467–486.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2019

Authors and Affiliations

  1. 1.Research Institute of Geodesy, Topography and CartographyZdiby 98Czech Republic
  2. 2.Land Survey OfficePraha 8Czech Republic

Personalised recommendations