Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Comparison of spectral and spatial methods for a Moho recovery from gravity and vertical gravity-gradient data

Abstract

In global studies investigating the Earth’s lithospheric structure, the spectral expressions for the gravimetric forward and inverse modeling of the global gravitational and crustal structure models are preferably used, because of their numerical efficiency. In regional studies, the applied numerical schemes typically utilize the expressions in spatial form. Since the gravity-gradient observations have a more localized support than the gravity measurements, the gravity-gradient data (such as products from the Gravity field and steady-state Ocean Circulation Explorer - GOCE - gravity-gradiometry satellite mission) could preferably be used in regional studies, because of reducing significantly the spatial data-coverage required for a regional inversion or interpretation. In this study, we investigate this aspect in context of a regional Moho recovery. In particular, we compare the numerical performance of solving the Vening Meinesz-Moritz’s (VMM) inverse problem of isostasy in spectral and spatial domains from the gravity and (vertical) gravity-gradient data. We demonstrate that the VMM spectral solutions from the gravity and gravity-gradient data are (almost) the same, while the VMM spatial solutions differ from the corresponding spectral solutions, especially when using the gravity-gradient data. The validation of the VMM solutions, however, reveals that the VMM spatial solution from the gravity-gradient data has a slightly better agreement with seismic models. A more detailed numerical analysis shows that the VMM spatial solution formulated for the gravity gradient is very sensitive to horizontal spatial variations of the vertical gravity gradient, especially in vicinity of the computation point. Consequently, this solution provides better results in regions with a relatively well-known crustal structure, while suppressing errors caused by crustal model uncertainties from distant zones. Based on these findings we argue that the gravity-gradient data are more suitable than the gravity data for a regional Moho recovery.

References

  1. Amante C. and Eakins B.W., 2009. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS, NGDC-24, NOAA, Boulder, CO, 19 pp.

  2. Arabelos D., Mantzios G. and Tsoulis D., 2007. Moho depths in the Indian Ocean based on the inversion of satellite gravity data. Advances in Geosciences, 9, World Scientific Publishing, Singapore, 41–52.

  3. Bagherbandi M., 2011. An Isostatic Earth Crustal Model and Its Geodetic Applications. PhD Thesis. Royal Institute of Technology, Stockholm, Sweden.

  4. Bagherbandi M., 2012. A comparison of three gravity inversion methods for crustal thickness modelling in Tibet plateau. J. Asian Earth Sci., 43, 89–97.

  5. Bagherbandi M. and Eshagh M., 2012. Crustal thickness recovery using an isostatic model and GOCE data. Earth Planets Space, 64, 1053–1057.

  6. Bagherbandi M. and Sjöberg L.E., 2012. Non-isostatic effects on crustal thickness: A study using CRUST2.0 in Fennoscandia. Phys. Earth Planet. Inter., 200–201, 37–44.

  7. Bagherbandi M., Tenzer R., Sjöberg L.E. and Novák P., 2013. Improved global crustal thickness modeling based on the VMM isostatic model and non-isostatic gravity correction. J. Geodyn., 66, 25–37.

  8. Bagherbandi M., Tenzer R. and Sjöberg L.E., 2014. Moho depth uncertainties in the Vening- Meinesz Moritz inverse problem of isostasy. Stud. Geophys. Geod., 58, 227–248.

  9. Bassin C., Laske G. and Masters G., 2000. The current limits of resolution for surface wave tomography in North America. Eos Trans. AGU, 81, F897.

  10. Braitenberg C. and Zadro M., 1999. Iterative 3D gravity inversion with integration of seismologic data. Boll. Geof. Teor. Appl., 40, 469–476.

  11. Braitenberg C., Zadro M., Fang J., Wang Y. and Hsu H.T., 2000a. Gravity inversion in Qinghai- Tibet plateau. Phys. Chem. Earth, 25, 381–386.

  12. Braitenberg C., Zadro M., Fang J., Wang Y. and Hsu H.T., 2000b. The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. J. Geodyn., 30, 489–505.

  13. Cutnell J.D. and Kenneth W.J., 1995. Physics. 3rd Edition. Wiley, New York.

  14. Dziewonski A.M. and Anderson D.L., 1981. Preliminary reference Earth model. Phys. Earth Planet. Inter., 25, 297–356.

  15. Ekholm S., 1996. A full coverage, high-resolution, topographic model of Greenland computed from a variety of digital elevation data. J. Geophys. Res., 101(B10), 21961–21972.

  16. Eshagh M., Bagherbandi M. and Sjöberg L.E., 2011. A combined global Moho model based on seismic and gravimetric data. Acta Geod. Geoph. Hung., 46, 25–38.

  17. Eshagh M., 2014. Determination of Moho discontinuity from satellite gradiometry data: linear approach. Geodyn. Res. Int. Bull., 1(2), 1–13.

  18. Floberghagen R., Fehringer M., Lamarre D., Muzi D., Frommknecht B., Steiger C., Piñeiro J. and da Costa A., 2011. Mission design, operation and exploitation of the gravity field and steadystate ocean circulation explorer (GOCE) mission. J. Geodesy, 85, 749–758.

  19. Fretwell P., Pritchard H.D., Vaughan D.G., Bamber J.L., Barrand N.E., Bell R., Bianchi C., Bingham R.G., Blankenship D.D., Casassa G., Catania G., Callens D., Conway H., Cook A.J., Corr H.F.J., Damaske D., Damm V., Ferraccioli F., Forsberg R., Fujita S., Gim Y., Gogineni P., Griggs J.A., Hindmarsh R.C.A., Holmlund P., Holt J.W., Jacobel R.W., Jenkins A., Jokat W., Jordan T., King E.C., Kohler J., Krabill W., Riger-Kusk M., Langley K.A., Leitchenkov G., Leuschen C., Luyendyk B.P., Matsuoka K., Mouginot J., Nitsche F.O., Nogi Y., Nost O.A., Popov S.V., Rignot E., Rippin D.M., Rivera A., Roberts J., Ross N., Siegert M.J., Smith A.M., Steinhage D., Studinger M., Sun B., Tinto B.K., Welch B.C., Wilson D., Young D.A., Xiangbin C. and Zirizzotti A., 2013. Bedmap2: improved ice bed, surface and thickness datasets for Antarctica. Cryosphere, 7, 375–393.

  20. Gladkikh V. and Tenzer R., 2011. A mathematical model of the global ocean saltwater density distribution. Pure Appl. Geophys., 169, 249–257.

  21. Grad M., Tiira T. and ESC Working Group, 2009. The Moho depth map of the European Plate. Geophys. J. Int., 176, 279–292.

  22. Heiskanen W.H. and Moritz H., 1967. Physical Geodesy. W.H. Freeman, San Francisco, CA.

  23. Hinze W.J., 2003. Bouguer reduction density, why 2.67? Geophysics, 68, 1559–1560.

  24. Laske G., Masters G., Ma Z. and Pasyanos M.E., 2012. CRUST1.0: An updated global model of Earth’s crust. Geophys. Res. Abs., 14, EGU2012–3743–1.

  25. Mayer-Gürr T. and the GOCO Consortium, 2012. The new combined satellite only model GOCO03s. http://www.bernese.unibe.ch/publist/2012/pres/Pres_GGHS2012_mayer-guerr _etal.pdf

  26. Moritz H., 1980. Advanced Physical Geodesy. Wichmann, Karlsruhe, Germany.

  27. Moritz H., 1990. The Figure of the Earth: Theoretical Geodesy and the Earth’s Interior. Wichmann, Karlsruhe, Germany.

  28. Moritz H., 2000. Geodetic Reference System 1980. J. Geodesy, 74, 128–162.

  29. Novák P. and Tenzer R., 2013. Gravitational gradients as a tool for probing the Earth’s structure. Surv. Geophys., 34, 653–673.

  30. Oldenburg D.W., 1974. The inversion of interpretation of gravity anomalies. Geophysics, 39, 526–536.

  31. Reguzzoni M. and Sampietro D., 2012. Moho estimation using GOCE data: A numerical simulation. In: Kenyon S., Pacino M.C. and Marti U. (Eds), Geodesy for Planet Earth. International Association of Geodesy Symposia, 136. Springer-Verlag, Heidelberg, Germany, 205–214.

  32. Reguzzoni M. and Sampietro D., 2015. GEMMA: An Earth crustal model based on GOCE satellite data. Int. J. Appl. Earth Obs. Geoinf., 35, 31–43.

  33. Reguzzoni M., Sampietro D. and Sansò F., 2013. Global Moho from the combination of the CRUST2.0 model and GOCE data. Geophys. J. Int., 195, 222–237.

  34. Rossi L., Reguzzoni M., Sampietro D. and Sansò F., 2015. Integrating geological prior information into the inverse gravimetric problem: the Bayesian approach. In: Sneeuw N., Novák P., Crespi M. and Sansò F. (Eds), VIII Hotine-Marussi Symposium on Mathematical Geodesy. International Association of Geodesy Symposia, 142. Springer-Verlag, Heidelberg, Germany, 317–324.

  35. Sampietro D., 2011. GOCE exploitation for Moho modelling and applications. In: Ouwehand L. (Ed.), 4th International GOCE User Workshop. ESA SP-696, ESA Communications, European Space Agency, Noordwijk, The Netherlands.

  36. Sampietro D., Reguzzoni M. and Braitenberg C., 2013. The GOCE estimated Moho beneath the Tibetan Plateau and Himalaya. In: Rizos C. and Willis P. (Eds), Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, 139, Springer-Verlag, Heidelberg, Germany, 391–397.

  37. Sjöberg L.E., 2009. Solving Vening Meinesz-Moritz inverse problem in isostasy. Geophys. J. Int., 179, 1527–1536.

  38. Sjöberg L.E., 2013. On the isotactic gravity anomaly and disturbance and their applications to Vening Meinesz-Moritz gravimetric inverse problem. Geophys. J. Int., 93, 1277–1282.

  39. Sjöberg L.E. and Bagherbandi M., 2011. A method of estimating the Moho density contrast with a tentative application of EGM08 and CRUST2.0. Acta Geophys., 59, 502–525.

  40. Tenzer R., Hamayun and Vajda P., 2009. Global maps of the CRUST2.0 crustal components stripped gravity disturbances. J. Geophys. Res., 114, B05408.

  41. Tenzer R., Gladkikh V., Vajda P. and Novák P., 2012a. Spatial and spectral analysis of refined gravity data for modelling the crust-mantle interface and mantle-lithosphere structure. Surv. Geophys., 33, 817–839.

  42. Tenzer R., Hamayun Novák P., Gladkikh V. and Vajda P., 2012b. Global crust-mantle density contrast estimated from EGM2008, DTM2008, CRUST2.0, and ICE-5G. Pure Appl. Geophys., 169, 1663–1678.

  43. Tenzer R., Novák P. and Gladkikh V., 2012c. The bathymetric stripping corrections to gravity field quantities for a depth-dependent model of the seawater density. Mar. Geod., 35, 198–220.

  44. Tenzer R. and Chen W., 2014a. Expressions for the global gravimetric Moho modeling in spectral domain. Pure Appl. Geophys., 171, 1877–1896.

  45. Tenzer R. and Chen W., 2014b. Regional gravity inversion of crustal thickness beneath the Tibetan Plateau. Earth Sci. Inf., 7, 265–276.

  46. Tenzer R., Chen W. and Jin S., 2015a. Effect of the upper mantle density structure on the Moho geometry. Pure Appl. Geophys., 172, 1563–1583.

  47. Tenzer R., Chen W., Tsoulis D., Bagherbandi M., Sjöberg L.E., Novák P. and Jin S., 2015b. Analysis of the refined CRUST1.0 crustal model and its gravity field. Surv. Geophys., 36, 139–165.

  48. Vening Meinesz F.A., 1931. Une nouvelle methode pour la reduction isostatique regionale de l’intensite de la pesanteur. Bull. Geod., 29, 33–51 (in French).

  49. Wang H., Xue C. and Hongzhi Y., 1993. An iterative method for inversion of deep large-scale single density interface by using gravity anomaly data. Chinese J. Geophys., 36, 643–650.

  50. Ye Z., Tenzer R., Sneeuw N., Liu L. and Wild-Pfeiffer F., 2016. Generalized model for a Moho inversion from gravity and vertical gravity-gradient data. Geophys. J. Int., 207, 111–128.

Download references

Author information

Correspondence to Robert Tenzer.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, Z., Tenzer, R. & Liu, L. Comparison of spectral and spatial methods for a Moho recovery from gravity and vertical gravity-gradient data. Stud Geophys Geod 61, 469–496 (2017). https://doi.org/10.1007/s11200-016-1049-4

Download citation

Keywords

  • crust
  • GOCE
  • gravity
  • isostasy
  • Moho