Studia Geophysica et Geodaetica

, Volume 61, Issue 1, pp 19–34 | Cite as

A general weighted total Kalman filter algorithm with numerical evaluation

  • Vahid Mahboub
  • Mohammad SaadatsereshtEmail author
  • Alireza A. Ardalan


An applicable algorithm for Total Kalman Filter (TKF) approach is proposed. Meanwhile, we extend it to the case in which we can consider arbitrary weight matrixes for the observation vector, the random design matrix and possible correlation between them. Also the updated dispersion matrix of the predicted unknown is given. This approach makes use of condition equations and straightforward variance propagation rules. It is applicable to data fusion within a dynamic errors-in-variables (DEIV) model, which usually appears in the determination of the position and attitude of mobile sensors. Then, we apply for the first time the TKF algorithm and its extended version named WTKF to a DEIV model and compare the results. The results show the efficiency of the proposed WTKF algorithm. In particular in the case of large weights, WTKF shows approximately 25% improvement in contrast to TKF approach.


Total Kalman filter dynamic errors-in-variables model prediction weight matrix mobile mapping kinematic positioning 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Doucet A., De Freitas N. and Gordon N., 2001. Sequential Monte-Carlo Methods in Practice. Springer-Verlag, Berlin, Germany.CrossRefGoogle Scholar
  2. Evensen G., 1994. Sequential data assimilation with a nonlinear quasigeostrophic model using Monte Carlo methods to forecast error statistics. J. Geophys. Res., 99, 10143–10162.CrossRefGoogle Scholar
  3. Evensen G., 1997. Advanced data assimilation for strongly nonlinear dynamics. Mon. Weather Rev., 125, 1342–1354.CrossRefGoogle Scholar
  4. Evensen G., 2007. Data Assimilation: The Ensemble Kalman Filter. Springer-Verlag, Berlin, Germany.Google Scholar
  5. Fang X., 2011. Weighted Total Least Squares Solutions for Applications in Geodesy. Ph.D. Thesis. Leibniz University, Hannover, Germany.Google Scholar
  6. Fang X., 2014. A structured and constrained Total Least-Squares solution with cross-covariances. Stud. Geophys. Geod., 58, 1–16.CrossRefGoogle Scholar
  7. Gelb A., 1974. Applied Optimal Estimation. MIT Press, Cambridge, MA.Google Scholar
  8. Jazwinski A.H., 1970. Stochastic Process and Filtering Theory. Academic Press, New York.Google Scholar
  9. Julier S.J. and Uhlmann J.K., 1997. New extension of the Kalman filter to nonlinear systems. SPIE Proceedings 3068, Signal Processing, Sensor Fusion, and Target Recognition VI, (28 July 1997), DOI: 10.1117/12.280797.Google Scholar
  10. Julier S.J., Uhlmann J.K. and Durrant-Whyte H., 1995. A new approach for filtering nonlinear systems. Proceedings of the 1995 American Control Conference, 1628–1632, DOI 10.1109/ACC.1995.529783.CrossRefGoogle Scholar
  11. Kalman R.E., 1960. A new approach to linear filtering and prediction problems. Trans. ASME - D, J. Basic Eng., 82, 34–45.Google Scholar
  12. Lefebvre T., Bruyninckx H. and De Schutter J., 2002. Comment on “A new method for the nonlinear transformation of means and covariances in filters and estimators”. IEEE Trans. Autom. Control, 47, 1406–1408.CrossRefGoogle Scholar
  13. Liu J. and Chen R., 1998. Sequential Monte Carlo methods for dynamic systems. J. Am. Stat. Assoc., 93, 1032–1044.CrossRefGoogle Scholar
  14. Magnus J., 1988. Linear Structures. Oxford University Press, Oxford, U.K.Google Scholar
  15. Mahboub V., 2012. On weighted total least-squares for geodetic transformations. J. Geodesy, 86, 359–367, DOI: 10.1007/s00190-011-0524-5.CrossRefGoogle Scholar
  16. Mahboub V., 2014. Variance component estimation in errors-in-variables models and a rigorous total least squares approach. Stud. Geophys. Geod., 58, 17–40, DOI: 10.1007/s11200-013- 1150-x.CrossRefGoogle Scholar
  17. Mahboub V., 2016. A weighted least-squares solution to a 3-D symmetrical similarity transformation without linearization. Stud. Geophys. Geod., 60, 195–209, DOI: 10.1007/s11200-014-1041-9.CrossRefGoogle Scholar
  18. Mahboub V., Amiri-Simkooei A. and Sharifi M.A., 2012. Iterativelyreweighted total least-squares: A robust estimation in errors-in-variables models. Surv. Rev., 45, 92–99, DOI: 10.1179/1752270612Y.0000000017.Google Scholar
  19. Mahboub V., Ardalan A.A. and Ebrahimzadeh S., 2015. Adjustment of non-typical errors-in37 variables models. Acta Geod. Geophys., 50, 207–218, DOI 10.1007/s40328-015-0109-5.CrossRefGoogle Scholar
  20. Mahboub V. and Sharifi M.A., 2013. On weighted total least-squares with linear and quadratic constraints. J. Geodesy, 87, 279–286, DOI: 10.1007/s00190-012-0598-8.CrossRefGoogle Scholar
  21. Maybeck P., 1979. Stochastic Models, Estimation, and Control, Volume 1. Academic Press, Waltham, MA.Google Scholar
  22. Neitzel F., 2010. Generalization of total least-squares 1 on example of unweighted and weighted similarity transformation. J. Geodesy, 84, 751–762.CrossRefGoogle Scholar
  23. Neitzel F. and Schaffrin B., 2016. On the Gauss-Helmert model with a singular dispersion matrixwhere BQ is of smaller rank than B. J. Comput. Appl. Math., 291, 458–467, DOI: 10.1016/ Scholar
  24. Sanso F., 1986. Statistical methods in physical geodesy. In: Sunkel H. (Ed.), Mathematical and Numerical Techniques in Physical Geodesy. Lecture Notes in Earth Sciences, 7. Springer-Verlag, Berlin, Germany, 49–155.CrossRefGoogle Scholar
  25. Schaffrin B. and Felus Y., 2008. On the multivariate total least-squares approach to empirical coordinate transformations. Three algorithms. J. Geodesy, 82, 353–383.Google Scholar
  26. Schaffrin B. and Iz H.B., 2008. Towards Total Kalman filtering for mobile mapping. In: Vettore A. and El-Sheimy N. (Eds), The 5th International Symposium on Mobile Mapping Technology. ISPRS Archives, XXXVI-5/C55, 270–275 ( C55/papers/schaffrin_burkhard.pdf).Google Scholar
  27. Schaffrin B., Snow K. and Neitzel F. 2014. On the Errors-In-Variables model with singular dispersion matrices. J. Geod. Sci., 4, 28–36, DOI: 10.2478/jogs-2014-0004.Google Scholar
  28. Schaffrin B. and Uzun S., 2011. Errors-InVvariables for mobile mapping algorithms in the presence of outliers. Arch. Photogramm. Cartogr. Remote Sens., 22, 377–387.Google Scholar
  29. Sheta B., 2012. Vision Based Navigation (VBN) of Unmanned Aerial Vehicles (UAV). PhD Thesis. University of Alberta, Calgary, Alberta, Canada.Google Scholar
  30. Shen Y.Z., Li B.F. and Chen Y., 2011. An iterative solution of weighted total least squares adjustment. J. Geodesy, 85, 229–238.CrossRefGoogle Scholar
  31. Sorenson H.W., 1966. Kalman filtering techniques. In: Leondes C.T. (Ed.), Advances in Control Systems: Theory and Applications. Volume 3. Academic Press, New York, 219–292.Google Scholar
  32. Stepanyan V., 2006. Vision based guidance and flight control in problems of aerial tracking. Scholar
  33. Teunissen P.J.G. and Khodabandeh A., 2013. BLUE, BLUP and the Kalman filter: some new results. J. Geodesy, 87, 461–473, DOI: 10.1007/s00190-013-0623-6.CrossRefGoogle Scholar
  34. van der Merwe R. and Wan E.A., 2004. Sigma-point Kalman filters for integrated navigation. Proceedings of the 60th Annual Meeting of The Institute of Navigation (2004), Dayton, OH, June 2004. The Institute of Navigation, Manassas, VA, 641–654.Google Scholar
  35. Xu P., Liu J. and Shi C., 2012. Total least squares adjustment in partial errors-in-variablesmodels: algorithm and statistical analysis. J. Geodesy, 86, 661–675.CrossRefGoogle Scholar
  36. Yi Y., 2007. On Improving the Accuracy and Reliability of GPS/Ins-Based Direct Sensor Georeferencing. PhD Thesis. The Ohio State University, Columbus, OH.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2017

Authors and Affiliations

  • Vahid Mahboub
    • 1
  • Mohammad Saadatseresht
    • 1
    Email author
  • Alireza A. Ardalan
    • 1
  1. 1.School of Surveying and Geospatial Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations