Studia Geophysica et Geodaetica

, Volume 62, Issue 1, pp 139–166 | Cite as

Magnetic and pedological characterisation of a paleosol under aridic conditions in Spain

  • Francisco BautistaEmail author
  • Maria Felicidad Bógalo
  • Antonio Sánchez Navarro
  • Avto Goguitchaichvili
  • María José Delgado Iniesta
  • Ruben Cejudo
  • Purificación Marín Sanleandro
  • Juana María Gil
  • Elvira Díaz-Pereira


The systematic use of magnetic techniques for the characterization of soils is still scarce despite its great potential for the identification of pedogenetic processes. The main objective of this study is to analyze the magnetic properties of a soil profile with contrasting horizons and try to relate them to the properties determined through conventional techniques. The horizons of a soil profile located in a tectonic depression in Murcia, Spain are described and their physical, chemical, and mineralogical properties analyzed with conventional techniques. The following magnetic properties are included in the study: the mass-specific magnetic susceptibility, frequency-dependent susceptibility, continuous thermomagnetic curves at low field, isothermal remanent magnetization acquisition and the estimation of magnetic hardness (coercitivity) through the parameter S-200. Detailed description of the soil profile and the results of conventional analyses allowed the identification of a mollic horizon, an argic horizon, and a calcic horizon, as well as a textural discontinuity. Apparently, pedogenic magnetite occurs in the A horizon and is responsible for the magnetization in most cases. The magnetic carriers in the Bt horizons are superparamagnetic particles and they are related to the high percentage of clay. High coercivity minerals (hematite and probably goethite) were detected in different concentrations in all soil horizons. The amount of ferrimagnetic minerals decreases with depth. The magnetic properties allowed a better characterization of the diagnostic horizons. The results and information derived from the analysis of the magnetic properties could not be obtained using conventional soil analysis only.


magnetic susceptibility pedogenesis saturation isothermal remanent magnetization ferrimagnetic minerals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar B., Bautista F., Goguitchaichvili A. and Morton O., 2011. Magnetic monitoring of top soils of Merida (Southern Mexico). Stud. Geophys. Geod., 55, 377–388, DOI: 10.1007/s11200-011-0021-6.CrossRefGoogle Scholar
  2. Aguilar B., Bautista F., Goguitchaichvili A., Morales J., Quintana P., Carvallo C. and Battu J., 2013a. Rock-magnetic properties of topsoils and urban dust from Morelia (>800000 inhabitants), Mexico: Implications for anthropogenic pollution monitoring in Mexico’s medium size cities. Geofís. Int., 52, 121–133, DOI: 10.1016/S0016-7169(13)71467-3.Google Scholar
  3. Aguilar B., Mejía V., Goguitchaichvili A., Escobar J., Bayona G., Bautista F., Morales M. and Ihl T., 2013b. Reconnaissance environmental magnetic study of urban soils, dust and leaves from Bogotá, Colombia. Stud. Geophys. Geod., 57, 741–754, DOI: 10.1007/s11200-012-0682-9.CrossRefGoogle Scholar
  4. Alcaraz Ariza, F. and Peinado Lorca, M., 1987. El sudeste ibérico semiárido. In: Peinado M. and Rivas-Martínez S. (Eds), La Vegetación de España. 1ª Edición. Servicio de Publicaciones Universidad de Alcalá de Henares, España, 259–281.Google Scholar
  5. Alekseeva T., Alekseev A., Maher B.A. and Demkin V., 2007. Late Holocene climate reconstructions for the Russian steppe, based on mineralogical and magnetic properties of buried palaeosols. Paleogeogr. Paleoclimatol. Paleoecol., 249, 103–127.CrossRefGoogle Scholar
  6. Anderson J. and Ingram J., 1993. Tropical Soil Biology and Fertility Program. A Handbook of Methods. CAB International, Wallingford, U.K.Google Scholar
  7. Anne P., 1945. Dosage rapide du carbone organique dans les sols. Ann. Agron., 15, 161–172 (in French).Google Scholar
  8. Barrón V. and Torrent J. 2002. Evidence for a simple pathway to maghemite in Earth and Mars soils. Geochim. Cosmochim. Acta, 66, 2801–2806.CrossRefGoogle Scholar
  9. Barrón V., Torrent J. and Grave E. 2003. Hydromghemite, an intermediate in the hydrothermal transformation of 2-line ferrihydrite into haematite. Am. Miner., 88, 1679–1688.CrossRefGoogle Scholar
  10. Bartel A., Bidegain J.C. and Sinito A.M., 2005. Propiedades magnéticas de diferentes suelos del partido de La Plata, provincia de Buenos Aires. Rev. Asoc. Geol. Argent., 60, 591–598 (in Spanish).Google Scholar
  11. Bartel A.A., Bidegain J.C. and Sinito A.M., 2011. Magnetic parameter analysis of a climosequence of soils in the Southern Pampean Region, Argentina. Geofis. Int., 50, 9–22.Google Scholar
  12. Bautista F., Cejudo-Ruiz R., Aguilar B. and Gogichaishvili A., 2014. El potencial del magnetismo en la clasificación de suelos: una revisión. Bol. Soc. Geol. Mex., 66, 365–376 (in Spainish).Google Scholar
  13. Bloemendal J., King J.W., Hall F.R. and Doh S.J., 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes and sediment lithology. J. Geophys. Res., 97(B4), 4361–4375.CrossRefGoogle Scholar
  14. Cejudo R., Bautista F., Quintana P., Delgado C., Aguilar D., Goguichaichvili A. and Morales J., 2015. Correlación entre elementos potencialmente tóxicos y propiedades magnéticas en suelos de la ciudad de México para la identificación de sitios contaminados: definición de umbrales magnéticos. Rev. Mex. Cien. Geol., 32, 50–61 (in Spanish).Google Scholar
  15. Conesa C., 1990. Terrazas aluviales de la rambla del Portús (franja costero-meridional de la provincia de Murcia). Papeles de Geografia, 16, 35–57 (in Spanish).Google Scholar
  16. Day R., Fuller M. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: Grain-size and compositional dependence. Phys. Earth Planet. Inter., 13, 260–267.CrossRefGoogle Scholar
  17. Dearing J.A., 1999. Environmental Magnetic Susceptibility: Using the Bartington MS2 System. Bartington Instruments, Oxford, U.K.Google Scholar
  18. Dearing J.A., Bird P.M., Dann R.J.L. and Benjamin S.F., 1997. Secondary ferromagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophys. J. Int., 130, 727–736.CrossRefGoogle Scholar
  19. Dearing J.A., Dann R.J.L., Hay K., Less J.A., Loveland P.J., Maher B.A. and O’Grady K., 1996, Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int., 124, 228–240.CrossRefGoogle Scholar
  20. Dearing J.A., Lees J.A. and White C., 1995. Mineral magnetic-properties of acid gleyed soils under oak and corsican pine. Geoderma, 68, 309–319.CrossRefGoogle Scholar
  21. Delgado Iniesta M.J., 1998. Suelos y vegetación en los afloramientos volcánicos neógenos de la zona litoral del sureste peninsular. PhD Thesis. University of Murcia, Murcia, Spain.Google Scholar
  22. Dixon J.B. and Weed S.B. (Eds), 1989. Minerals in Soil Environments. Second Edition. Soil Science Society of America, Madison, WI, USA.Google Scholar
  23. Duchaufour P., 1970. Précis de Pédologie. Masson et Cie, Paris, France (in French).Google Scholar
  24. Dunlop D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc), 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107, DOI: 10.1029 /2001JB000486.Google Scholar
  25. Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism: Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  26. Egli R., 2004. Characterization of individual rock magnetic components by analysis of remanence curves, 1. Unmixing natural sediments. Stud. Geophys. Geod., 48, 391–446.CrossRefGoogle Scholar
  27. Evans M.E. and Heller F., 2003. Environmental Magnetism: Principles and Applications of Environmagnetics. Academic Press, San Diego, CA.Google Scholar
  28. Faz A., Ortiz R. and Fernandez M.T., 2001. Evidence of paleoprocesses in some poorly developed soils on consolidated material in the Sierra de Carrascoy (SE Spain). Catena, 43, 267–276.CrossRefGoogle Scholar
  29. Feng Z.D., 2001. Gobi dynamics in the Northern Mongolian Plateau during the past 20,000+ yr: preliminary results. Quat. Int., 76–77, 77–83.CrossRefGoogle Scholar
  30. Fine P., Singer M.J., La Ven R., Verosub K. and Southard R.J., 1989. Role of pedogenesis in distribution of magnetic-susceptibility in 2 california chronosequences. Geoderma, 44, 287–306.CrossRefGoogle Scholar
  31. Fine P., Singer M.J., Verosub K.L. and Tenpas J., 1993. New evidence for the origin of ferrimagnetic minerals in loess from china. Soil Sci. Soc. Am. J., 57, 1537–1542.CrossRefGoogle Scholar
  32. FAO, 2006. Guidelines for Soil Description. Fourth Edition. Food and Agriculture Organization of the United Nations, Rome, Italy.Google Scholar
  33. Gallegos A., Bautista F. and Dubrovina I., 2016. Soil & Environment as a tool for soil environmental functions evaluation. Software & Systems, 114, 195–200. DOI: 10.15827/0236-235x.114.195-200 (in Russian).Google Scholar
  34. Geiss C.E., Egli R. and Zanner C.W., 2008. Direct estimates of pedogenic magnetite as a tool to reconstruct past climates from buried soils. J. Geophys. Res., 113, B11102, DOI: 10.1029 /2008JB005669.CrossRefGoogle Scholar
  35. Goguitchaichvili A., Ramírez-Herrera T., Calvo-Rathert M., Aguilar B., Carrancho A., Caballero C., Bautista F. and Morales J., 2013. Magnetic fingerprint of tsunami-induced deposits in the Ixtapa-Zihuatanejo area, Western Mexico. Int. Geol. Rev., 55, 1462–1470, DOI: 10.1080/00206814.2013.779781.CrossRefGoogle Scholar
  36. Gómez I.A. and González-Peñaloza F.A., 2007. Los suelos de la Sierra de Algodonales (Cádiz). In: Bellinfante N. and Jordán A. (Eds), Tendencias Actuales de la Ciencia del Suelo. Universidad de Sevilla, Sevilla, Spain, 842–850 (in Spanish).Google Scholar
  37. Hanesch M., Rantitsch G., Hemetsberger S. and Scholger R., 2007. Lithological and pedological influences on the magnetic susceptibility of soil: Their consideration in magnetic pollution mapping. Sci. Tot. Environ., 382, 351–363.CrossRefGoogle Scholar
  38. Hannam J.A. and Dearing J.A., 2008. Mapping soil magnetic properties in Bosnia and Herzegovina for landmine clearance operations. Earth Planet. Sci. Lett., 274, 285–294.CrossRefGoogle Scholar
  39. Heslop D., Dekkers M.J., Kruiver P.P. and Van Oorschot I.H.M., 2002. Analysis of isothermal remanent magnetisation acquisition urves using the expectation-maximisation algorithm. Geophys. J. Int., 148, 58–64.CrossRefGoogle Scholar
  40. Hu P., Liu Q., Torrent J., Barrón V. and Jin C., 2013. Characterizing and quantifying iron oxides in Chinese loess/paleosols: Implications for pedogenesis. Earth Planet. Sci. Lett., 369–370, 271–283.CrossRefGoogle Scholar
  41. Hunt C.P., Moskowitz B.M. and Banerjee S.K., 1995. Magnetic properties of rocks and minerals. In: Ahrens T.J. (Ed.), Rock physics and phase relations, a handbook of physical constants. AGU Reference Shelf 3. American Geophysical Union, Washington, D.C., 189–204.CrossRefGoogle Scholar
  42. IGME, 1977. Mapa Geológico de España. E-1:50000, Hoja 955, 27–38. Ministerio de Industria y Energía, Madrid, Spain (in Spanish).Google Scholar
  43. IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, Update 2015. International Soil Classification System for Naming Soils and Creating Legends for Soil Maps. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations, Rome, Italy, ISBN: 978-92-5-108369-7 (print), 978-92-5-108370-3 (pdf).Google Scholar
  44. Jordanova D., Jordanova N., Petrov P. and Tsacheva T., 2010. Soil development of three Chernozem-like profiles from North Bulgaria revealed by magnetic studies. Catena, 83, 158–169.CrossRefGoogle Scholar
  45. Jordanova N., Jordanova D. and Petrov P., 2011. Magnetic imprints of pedogenesis in Planosols and Stagnic Alisol from Bulgaria. Geoderma, 160, 477–489.CrossRefGoogle Scholar
  46. Jordanova N., Jordanova D., Liu Q., Hu P., Petrov P. and Petrovský E., 2013. Soil formation and mineralogy of a Rhodic Luvisol -insights from magnetic and geochemical studies. Global Planet. Change, 110, 397–413.CrossRefGoogle Scholar
  47. King J., Banerjee S.K., Marvin J. and Özdemir Ö., 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth Planet. Sci. Lett., 59, 404–419.CrossRefGoogle Scholar
  48. Kletetschka G. and Wasilewski P.J., 2002. Grain size limit for SD hematite. Phys. Earth Planet. Inter., 129, 173–179.CrossRefGoogle Scholar
  49. Kumaravel V., Sangode S.J., Siddaiah N.S. and Kumar R., 2010. Interrelation of magnetic susceptibility, soil color and elemental mobility in the Pliocene-Pleistocene Siwalik paleosol sequences of the NW Himalaya, India. Geoderma, 154, 267–280.CrossRefGoogle Scholar
  50. Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet. Sci. Lett., 189, 269–276.CrossRefGoogle Scholar
  51. Larrasoaña J.C., Roberts A.P., Liu Q., Lyons R., Oldfield F., Rohling E.J. and Heslop D., 2015. Source-to-sink magnetic properties of NE Saharan dust in Eastern Mediterranean marine sediments: review and paleoenvironmental implications. Front. Earth Sci., 3, 19, DOI: 10.3389/feart.2015.00019.Google Scholar
  52. Leonhardt R., 2006. Analyzing rock magnetic measurements; the RockMagAnalyzer 1.0 Software. Comput. Geosci., 32, 1420–1431.CrossRefGoogle Scholar
  53. Liu Q., Jackson M.J., Yu Y., Chen F., Deng C. and Zhu R., 2004. Grain size distribution of pedogenic magnetic particles in Chinese loess/paleosols. Geophys. Res. Lett., 31, L22603.CrossRefGoogle Scholar
  54. Liu Q., Roberts A.P., Torrent J., Horng C.S. and Larrasoaña J.C., 2007. What do the HIRM and S-ratio really measure in environmental magnetism? Geochem. Geophys. Geosyst., 8, Q09011, DOI: 10.1029/2007GC001717.Google Scholar
  55. Liu Q., Barrón V., Torrent J., Qin H and Yu Y., 2010a. The magnetism of micro-sized hematite explained. Phys. Earth Planet. Inter., 193, 387–397.CrossRefGoogle Scholar
  56. Liu Q., Hu P., Torrent J., Barrón V., Zhao X., Jiang Z. and Su Y., 2010b. Environmental magnetic study of a Xeralf chronosequence in northwestern Spain: Indications for pedogenesis. Palaeogeogr. Palaeoclimatol. Palaeoecol., 293, 144–156.CrossRefGoogle Scholar
  57. Liu Q., Roberts A.P., Larrasoaña J.C., Banerjee S.K., Guyodo Y., Tauxe L. and Oldfield F., 2012. Environmental magnetism: principles and applications. Rev. Geophys., 50, RG4002.CrossRefGoogle Scholar
  58. Lourenço A.M., Sequeira E., Sant’Ovaia H. and Gomes C.R. 2014. Magnetic, geochemical and pedological characterisation of soil profiles from different environments and geological backgrounds near Coimbra, Portugal. Geoderma, 213, 408–418.CrossRefGoogle Scholar
  59. Maher B.A., 1986. Characterization of soils by mineral magnetic measurements. Phys. Earth Planet. Inter., 42, 76–92.CrossRefGoogle Scholar
  60. Maher B.A. 1988. Magnetic properties of some synthetic submicron magnetites. Geophys J., 94, 83–96.CrossRefGoogle Scholar
  61. Maher B.A. and Taylor R.M., 1988. Formation of ultrafine magnetite in soils. Nature, 336, 368–370.CrossRefGoogle Scholar
  62. Maher B.A., Alekseev A. and Alekseeva T., 2003. Magnetic mineralogy of soils across the Russian steppe: climatic dependence of pedogenic magnetite formation: Palaeogeogr. Palaeoclim. Palaeoecol., 201, 321–341.CrossRefGoogle Scholar
  63. Mullins C.E., 1977. Magnetic susceptibility of the soil and its significance in soil science -a review. J. Soil Sci., 28, 223–246.CrossRefGoogle Scholar
  64. Munsell Color, 1992. Munsell Soil Color Charts. Munsell Color, Newburgh, NY.Google Scholar
  65. Nunes de Lima M.V., 2005. IMAGE2000 and CLC2000 Products and Methods. European Commission, Joint Research Centre, Institute for Environment and Sustainability, Land Management Unit, Ispra, Italy, ISBN: 92-894-9862-5.Google Scholar
  66. Oches E.A. and Banerjee S.K., 1996. Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Republic. Stud. Geophys. Geod., 40, 287–300.CrossRefGoogle Scholar
  67. Orgeira M.J., Egli R. and Compagnucci R.H., 2011. A quantitative model of magnetic enhancement in loessic soils. In: Petrovský E., Herrero-Bervera E., Harinarayana T. and Ivers D. (Eds), The Earth’s Magnetic Interior. Springer, Dordrecht, The Netherlands, 361–397.CrossRefGoogle Scholar
  68. Peters C and Dekkers M.J., 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth, 28, 659–667.CrossRefGoogle Scholar
  69. Ramírez-Herrera T., Lagos M., Hutchinson I., Kostoglodov V., Machain M.L., Caballero M., Gogichaishvili A., Aguilar B., Chagué-Goff C., Goff J., Ruiz-Fernández A.C., Ortiz M., Nava H., Bautista F., Lopez G.I. and Quintana P., 2012. Extreme wave deposits on the Pacific coast of Mexico: tsunamis or storms? A multi-proxy approach. Geomorphology, 139, 360–371.CrossRefGoogle Scholar
  70. Rivas J.F., Ortega B., Sedov S., Solleiro E. and Sychera S., 2006. Rock magnetism and pedogenetic processes in luvisol profiles: Examples from central Russia and central Mexico. Quat. Int., 156, 212–223.CrossRefGoogle Scholar
  71. Rivas J.F., Ortega B., Solleiro-Rebolledo E., Sedov S. and Sánchez S., 2011. Mineralogía magnética de suelos volcánicos en una toposecuencia del valle de Teotihuacán. Bol. Soc. Geol. Mex., 64, 1–20 (in Spanish).Google Scholar
  72. Robertson D.J. and France D.E., 1994. Discrimination of remanence-carrying minerals in mixtures, using isothermal remanent magnetization acquisition curves. Phys. Earth Planet. Inter., 82, 223–234.CrossRefGoogle Scholar
  73. Roberts A.P., Cui Y. and Verosub K.L., 1995. Wasp-waisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res., 100(B9), 17909–17924.CrossRefGoogle Scholar
  74. Roberts A.P., Liu Q.S., Rowan C.J., Chang L., Carvallo C., Torrent J. and Horng C.S., 2006. Characterization of hematite (alpha-Fe2O3), goethite (alpha-FeOOH), greigite (Fe3S4), and pyrrhotite (Fe7S8) using first-order reversal curve diagrams. J. Geophys. Res., 111, B12S35.CrossRefGoogle Scholar
  75. Robinson S.G., 1986. The late Pleistocene palaeoclimatic record of North Atlantic deep-sea sediments revealed by mineral-magnetic measurements. Phys. Earth Planet. Inter., 42, 22–47.CrossRefGoogle Scholar
  76. Romero G., Mancheño M.A. and Carlos J.A., 2007. Hallazgo de tortuga gigante fósil en el Puerto de la Cadena (Murcia). In: Sánchez M.B., Collado P.E. and Lechuga M. (Eds), XVIII Jornadas de Patrimonio Cultural. Intervenciones en el Patrimonio Arquitectónico, Arqueológico y Etnográfico de la Región de Murcia. Gestión Editorial, Comunidad Autónoma de la Región de Murcia, Universidad Politécnica de Cartagena, Cátedra Forum UNESCO, Murcia, España, 13–49 (in Spanish).Google Scholar
  77. Schwertmann U., 1988. Some properties of soil and synthetic iron oxides. In: Stucki J.W., Goodmann B.A. and Schwertmann U. (Eds), Iron in Soils and Clay Minerals. NATO Advanced Institute, Dordrecht, The Netherlands, 203–205.CrossRefGoogle Scholar
  78. Singer M.J., Fine P., Verosub K.L. and Chadwick O.A., 1992. Time-dependence of magneticsusceptibility of soil chronosequences on the California coast. Quat. Res., 37, 323–332.CrossRefGoogle Scholar
  79. Singer M.J., Verosub K.L., Fine P. and TenPas J., 1996. A conceptual model for the enhancement of magnetic susceptibility in soils. Quat. Int., 34–36, 243–248.CrossRefGoogle Scholar
  80. Soil Survey Staff, 2010. Keys to Soil taxonomy, 11th Edition. Natural Resources Conservation Service, United States Department of Agriculture, Washington, D.C.Google Scholar
  81. Soil Survey Staff, 2014. Kellog Soil Survey Laboratory Methods Manual. Soil Survey Investigations Report No. 42, v. 5.0. National Resources Conservation Services, United States Department of Agriculture, Washington, D.C.Google Scholar
  82. Soubrand-Colin M., Horen H. and Courtin-Nomade A., 2009. Mineralogical and magnetic characterisation of iron titanium oxides in soils developed on two various basaltic rocks under temperate climate. Geoderma, 149, 27–32.CrossRefGoogle Scholar
  83. Spassov S., Heller F., Kretzschmar R., Evans M.E., Yue L.P. and Nourgaliev D.K., 2003. Detrital and pedogenic magnetic mineral phases in the loess/paleosol sequence at Lingtai (Central Chinese Loess Plateau). Phys. Earth Planet. Inter., 140, 255–275.CrossRefGoogle Scholar
  84. Soler-Arechalde A., Goguitchaichvili A., Carrancho A., Sedov S., Caballero-Miranda C., Ortega B., Solís B., Morales J., Urrutia-Fucugauchi J. and Bautista F., 2015. A detailed paleomagnetic and rock-magnetic investigation of the Matuyama-Bruhnes geomagnetic reversal recorded in tephra-paleosol sequence of Tlaxcala (Central Mexico). Front. Earth Sci., 3, 11, DOI: 10.3389/feart.2015.00011.CrossRefGoogle Scholar
  85. Tauxe L., Mullender T.A.T. and Pick T., 1996. Potbellies, wasp-waisted and superparamagnetism in magnetic hysteresis. J. Geophys. Res., 101(B1), 571–583.CrossRefGoogle Scholar
  86. Thompson R. and Oldfield F., 1986. Environmental Magnetism. Allen and Unwin, London, U.K.CrossRefGoogle Scholar
  87. Torrent J., Schwertmann U. and Schulze D.G., 1980. Iron-oxide mineralogy of some soils of 2 river terrace sequences in Spain. Geoderma, 23, 191–208.CrossRefGoogle Scholar
  88. Torrent J., Barrón V. and Liu Q., 2006. Magnetic enhancement is linked to and precedes hematite formation in aerobic soil. Geophys. Res. Lett., 33, L02401.CrossRefGoogle Scholar
  89. Torrent J., Liu Q, Bloemendal J. and Barrón V., 2007. Magnetic enhancement and iron oxides in the upper Luochuan loess-paleosol sequence, Chinese Loess Plateau. Soil Sci. Soc. Am. J., 71, 1570–1578.CrossRefGoogle Scholar
  90. Torrent J., Liu Q.S. and Barrón V. 2010a. Magnetic minerals in Calcic Luvisols (Chromic) developed in a warm Mediterranean region of Spain: origin and paleoenvironmental significance. Geoderma, 154, 465–472.CrossRefGoogle Scholar
  91. Torrent J., Liu Q.S. and Barrón V. 2010b. Magnetic susceptibility changes in relation to pedogenesis in a Xeralf chronosequence in in northwestern Spain. Eur. J. Soil Sci., 61, 161–173.CrossRefGoogle Scholar
  92. Wagner S., Guenster N. and Skowronek A., 2012. Genesis and climatic interpretation of paleosols and calcretes in a plio-pleistocene alluvial fan of the costa blanca (SE Spain). Quat. Int., 265, 170–178.CrossRefGoogle Scholar
  93. Yaalon D.H., 1997. Soils in the Mediterranean region: What makes them different? Catena, 28, 157–169.CrossRefGoogle Scholar
  94. Zerboni A., Trombino L. and Cremaschi M., 2011. Micromorphological approach to polycyclic pedogenesis on the Messak Settafet plateau (central Sahara): Formative processes and palaeoenvironmental significance. Geomorphology, 125, 319–335.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2018

Authors and Affiliations

  • Francisco Bautista
    • 1
    • 5
    Email author
  • Maria Felicidad Bógalo
    • 2
  • Antonio Sánchez Navarro
    • 3
  • Avto Goguitchaichvili
    • 4
  • María José Delgado Iniesta
    • 3
  • Ruben Cejudo
    • 4
  • Purificación Marín Sanleandro
    • 3
  • Juana María Gil
    • 5
  • Elvira Díaz-Pereira
    • 5
  1. 1.Laboratorio Universitario de Geofísica Ambiental (LUGA), Centro de Investigaciones en Geografía AmbientalUniversidad Nacional Autónoma de MéxicoMichoacánMéxico
  2. 2.Departamento de Física, Escuela Politécnica SuperiorUniversidad de Burgos, Avda. Cantabria s/nBurgosSpain
  3. 3.Departamento de Química Agrícola, Geología y Edafología, Facultad de QuímicaUniversidad de Murcia, Campus Universitario de EspinardoEspinardo (Murcia)Spain
  4. 4.Laboratorio Universitario de Geofísica Ambiental, Instituto de Geofísica, Unidad MoreliaUniversidad Nacional Autónoma de MéxicoMichoacánMéxico
  5. 5.Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Departamento de Conservación de Suelos y Agua y Manejo de Residuos OrgánicosCampus Universitario de EspinardoEspinardo (Murcia)Spain

Personalised recommendations