Advertisement

Studia Geophysica et Geodaetica

, Volume 60, Issue 2, pp 316–331 | Cite as

Particulate matter pollution from a small coke-burning factory: soil magnetic screening and its relation with a simple atmospheric dispersion model

  • José D. Gargiulo
  • Marcos A.E. Chaparro
Article
  • 86 Downloads

Abstract

Coal combustion processes lead to release of gases and particulate matter (PM) into the atmosphere that are often harmful to human health. These airborne pollutants seem to be dispersed and deposited in soils mainly according to the prevailing atmospheric conditions. Several trace elements can be found attached to PM as well as Fe-rich magnetic particles that can produce magnetic enhancement in the uppermost soil horizons. In the present work, we use a simple Gaussian Dispersion Model (GDM) for modelling the distribution of fine PM emission coming from a small coal (coke) burning factory in order to evaluate the relationship between such modelled data (PM distribution) and measured data (soil magnetic properties and trace metal contents). Our results show a strong spatial variation of concentration-dependent magnetic parameters based on a uniform magnetomineralogy in the overall study area. In addition, these results were analysed using multivariate statistics for 13 magnetic and chemical variables and the GDM results for two different atmospheric stability classes, and hence the in-situ magnetic susceptibility, anhysteretic and saturation remanent magnetization showed positive and statistically significant correlation with the GDM results (R = 0.70). Therefore, these results demonstrate the usefulness of magnetic properties in monitoring the PM distribution in soils or other environmental PM collectors.

Keywords

magnetic parameters heavy metals Gaussian dispersion model multivariate statistics coke burning plant 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bidegain J.C., Chaparro M.A.E., Marié D.C. and Jurado S., 2011. Air pollution caused by manufacturing coal from petroleum coke in Argentina. Environ. Earth Sci., 62, 847–855.CrossRefGoogle Scholar
  2. Blundell A., Hannam J.A., Dearing J.A. and Boyle J.F., 2009. Detecting atmospheric pollution in surface soils using magnetic measurements: A reappraisal using an England and Wales database. Environ. Pollut., 157, 2878–2890.CrossRefGoogle Scholar
  3. Chaparro M.A.E., 2006. Estudio de Parámetros Magnéticos de Distintos Ambientes Relativamente Contaminados en Argentina y Antártida (Study of Magnetic Parameters of Several Relatively Polluted Sites from Argentina and Antarctica). Monografía No. 7, Geofísica UNAM, México (in Spanish).Google Scholar
  4. Chaparro M.A.E., Chaparro M.A.E., Marinelli C. and Sinito A.M., 2008. Multivariate techniques as alternative statistical tools applied to magnetic proxies for pollution: A case study from Argentina and Antarctica. Environ. Geol., 54, 365–371.CrossRefGoogle Scholar
  5. Chaparro M.A.E., Chaparro M.A.E. and Sinito A.M., 2012. An interval fuzzy model for magnetic monitoring: Estimation of a pollution index. Environ. Earth Sci., 66, 1477–1485.CrossRefGoogle Scholar
  6. Chaparro M.A.E., Gogorza C.S.G., Chaparro M.A.E., Irurzun M.A. and Sinito A.M., 2006. Review of magnetism and heavy metal pollution studies of various environments in Argentina. Earth Planets Space, 58, 1411–1422.CrossRefGoogle Scholar
  7. Chaparro M.A.E., Nuñez H., Lirio J.M., Gogorga C.S.G. and Sinito A.M., 2007. Magnetic screening and heavy metal pollution studies in soils from Marambio Station, Antarctica. Antartic. Sci., 19, 379–393.CrossRefGoogle Scholar
  8. Charlesworth S.M. and Lees J.A., 2001. The application of some mineral magnetic measurements and heavy metal analysis for characterising fine sediments in an urban catchment, Coventry, UK. J. Appl. Geophys., 48, 113–125.CrossRefGoogle Scholar
  9. Conner T.L., Norris G.A., Landis M.S. and Williams R.W., 2001. Individual particle analysis of indoor, outdoor, and community samples from the 1998 Baltimore particulate matter study. Atmos. Environ., 35, 3935–3946.CrossRefGoogle Scholar
  10. Cressie N.A., 1993. Statistics for Spatial Data. Revised Edition. John Wiley and Sons, New York.Google Scholar
  11. Dearing J., 1999 Magnetic susceptibility. In: Walden J., Oldfield F. and Smith J. (Eds), Environmental Magnetism: a Practical Guide. Technical Guide No 6. Quaternary Research Association, London, U.K., 35–62.Google Scholar
  12. Di Rienzo J.A., Casanoves F., Balzarini M.G., Gonzalez L., Tablada M. and Robledo C.W., 2012. INFOSTAT® (Version 2012). Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Córdoba, Argentina (www.infostat.com.ar).Google Scholar
  13. Diaz Pace D., 2002. Técnica LIBS para la Detección de Trazas en Suelos Mediante Análisis Espectroscópico considerando Líneas Absorbidas por el Plasma (LIBS Technique for Trace Element Detection in Soils Using Spectroscopy Analysis Considering Absorbed Lines for Plasmas). PhD Thesis. Fac. Exactas, UNCPBA, Tandil, Argentina (in Spanish).Google Scholar
  14. Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism. Fundamentals and Frontiers. Cambridge Univ. Press, Cambridge, U.K.CrossRefGoogle Scholar
  15. Durža O., 1999. Heavy contamination and magnetic susceptibility in soils around metallurgical plant. Phys. Chem. Earth A, 24, 541–543.CrossRefGoogle Scholar
  16. Flanders P.J., 1994. Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931–5936.CrossRefGoogle Scholar
  17. Gifford F.A., 1961. Uses of routine meteorological observation for estimating atmospheric dispersion. Nuclear Safety, 2(4), 47–51.Google Scholar
  18. Hanesch M. and Scholger R., 2002. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geol., 42, 857–870.CrossRefGoogle Scholar
  19. Heller F., Strzyszcz Z. and Magiera T., 1998. Magnetic record of industrial pollution in soils of Upper Silesia, Poland. J. Geophys. Res., 103(B8), 17767–17774.CrossRefGoogle Scholar
  20. Henke K., 2005. Trace element chemistry of fly ashes from co-combusted petroleum coke and coal. Paper #45. International Ash Utilization Symposium, Center for Applied Energy Research,. University of Kentucky, Lexington, KY (http://www.flyash.info/2005/117hen.pdf).Google Scholar
  21. Hower J.C., Thomas G.A., Mardon S.M. and Trimble A.S., 2005. Impact of co-combustion of petroleum coke and coal on fly ash quality: Case of study of a Western Kentucky power plant. Appl. Geochem., 20, 1309–1319.CrossRefGoogle Scholar
  22. Hunt A., Jones J. and Oldfield F., 1984. Magnetic measurements and heavy metals in atmospheric particulates of anthropogenic origin. Sci. Tot. Environ., 33, 129–139.CrossRefGoogle Scholar
  23. Jordanova N.V., Jordanova D.V., Veneva L., Yorova K. and Petrovský E., 2003. Magnetic response of soils and vegetation to heavy metal pollution - a case study. Environ. Sci. Technol., 37, 4417–4424.CrossRefGoogle Scholar
  24. Kapicka A., Petrovský E., Ustjak S. and Machácková K., 1999. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: A case study in Czech Republic. J. Geochem. Explor., 66, 291–297.CrossRefGoogle Scholar
  25. King J., Banerjee S.K., Marvin J. and Özdemir Ö., 1982. A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: Some results from lake sediments. Earth Planet. Sci. Lett., 59, 404–419.CrossRefGoogle Scholar
  26. Lavado R.S., Zubillaga M.S., Alvarez R. and Taboada M., 2004. Baseline levels of potentially toxic elements in Pampa soils. Soil Sediment. Contam., 13, 427–437.Google Scholar
  27. Liu G., Liu W. Cai Z. and Zheng M., 2013. Concentrations, profiles, and emission factors of unintentionally produced persistent organic pollutants in fly ash from coking processes. J. Hazard. Mater., 261, 421–426.CrossRefGoogle Scholar
  28. Lu S.G. and Bai S.Q., 2006. Study on the correlation of magnetic properties and heavy metals content in urban soils of Hangzhou City, China. J. Appl. Geophys., 60, 1–12.CrossRefGoogle Scholar
  29. Magiera T., Strzyszcz Z., Kapicka A., Petrovský E. and MAGPROX Team, 2006. Discrimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma, 130, 299–311.CrossRefGoogle Scholar
  30. Maher B., Moore C. and Matzka J., 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ., 42, 364–373.CrossRefGoogle Scholar
  31. Martin, D.O., 1976. Comment on change of concentration standard deviations with distance. J. Air Pollut. Contr. Assoc., 26, 145–146.CrossRefGoogle Scholar
  32. Nelson H.W., 1970. Petroleum Coke Handling Problem. https://web.anl.gov/PCS/acsfuel/preprint%20archive/Files/13_4_NEW%20YORK_09-69_0121.pdf.Google Scholar
  33. Pasquill F., 1961. The estimation of the dispersion of windborne material. Meteorol. Mag., 90, 33–49.Google Scholar
  34. Pazos M.S., 1996. Classification of soils of Azul county (Buenos Aires Province, Argentina) according to the World Reference Base for Soil Resources (ISSS, ISRIC, FAO, 1994). Cienc. del Suelo, 14, 116–118.Google Scholar
  35. Pazos M.S. and Mastelan S.A., 2001. Influence of the change from herbaceous to arboreal vegetation on some properties of luvic phaeozem soils exposed to cattle management. Información Tecnológica, 12(2), 19–25.Google Scholar
  36. Peters C. and Dekkers M.J., 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth, 28, 659–667.CrossRefGoogle Scholar
  37. Rachwal M., Magiera T. and Wawer M., 2015. Coke industry and steel metallurgy as the source of soil contamination by technogenic magnetic particles, heavy metals and polycyclic aromatic hydrocarbons. Chemosphere, 138, 863–873.CrossRefGoogle Scholar
  38. Schibler L., Boyko T., Ferdyn M., Gajda B., Höll S., Jordanova N., Rösler W. and MAGPROX Team, 2002. Topsoil magnetic susceptibility mapping: Data reproducibility and compatibility, meaurement strategy. Stud. Geophys. Geod., 46, 43–57.CrossRefGoogle Scholar
  39. Strzyszcz Z., 1993. Magnetic susceptibility of soils in the areas influenced by industrial emission. In: Schulin R., Webster R., Desaules A. and Steiger W. (Eds), Soil Monitoring. Monte Verita: Proceedings of the Centro Stefano Franscini. Birkhauser Veralg, Basel, Switzerland, 255–269.CrossRefGoogle Scholar
  40. Strzyszcz Z., Magiera T. and Heller F., 1996. The influence of industrial immissions on the magnetic susceptibility of soils in Upper Silesia. Stud. Geophys. Geod., 40, 276–286.CrossRefGoogle Scholar
  41. Thompson R. and Oldfield F., 1986. Environmental Magnetism. Allen and Unwin, London, U.K.CrossRefGoogle Scholar
  42. Martin T.D., Brockhoff C.A., Creed J.T. and EMMC Methods Work Group, 1994. Determination of trace elements in waters and wastes by inductively coupled plasma-atomic emission spectrometry. Method 200.7, Revision 4.4. In: Method for the determination of metals in environmental samples - Suplement 1. US-EPA/600/R-94/111. United States Environmental Protection Agency, Cincinnati, OH.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2016

Authors and Affiliations

  1. 1.Centro de Investigaciones en Física e Ingeniería del Centro de la Provincia de Buenos Aires (CIFICEN, CONICET-UNCPBA)TandilArgentina

Personalised recommendations