Studia Geophysica et Geodaetica

, Volume 60, Issue 2, pp 228–247 | Cite as

GECO: a global gravity model by locally combining GOCE data and EGM2008

  • Maddalena Gilardoni
  • Mirko Reguzzoni
  • Daniele Sampietro
Article

Abstract

The EGM2008 model is nowadays one of the description of the global gravitational field at the highest resolution. It is delivered with two, not fully consistent, sources of information on its error: spherical harmonic coefficient variances and a geographical map of error variances, e.g. in terms of geoid undulation. In the present work, the gravity field information derived from a GOCE satellite-only global model is used to improve the accuracy of EGM2008 model in the low to medium frequencies, especially in areas where no data were available at the time of EGM2008 computation. The key issue is to set up the error covariance matrices of the two models for an optimal least-squares combination: the full error covariance matrix of GOCE spherical harmonic coefficients is approximated by an order-wise block-diagonal matrix, while for EGM2008, the pointwise error variances are taken from the provided geoid error map and the error spatial correlations from the coefficient variances. Due to computational reasons the combination is directly performed in terms of geoid values over a regular grid on local areas. Repeating the combination for overlapping areas all over the world and then performing a harmonic analysis, a new combined model is obtained. It is called GECO and extends up to the EGM2008 maximum degree. Comparisons with other recent combined models, such as EIGEN-6C4, and a local geoid based on new gravity datasets in Antarctica are performed to evaluate its quality. The main conclusion is that the proposed combination, weighting the different input contributions not only on a global basis but also according to some local error information, can perform even better than other more sophisticated combinations in areas where the input global error description is not reliable enough.

Keywords

Earth’s gravity models satellite missions geoid combination Antarctica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balmino G., Reigber C. and Moynot B., 1976. A geopotential model determined from recent satellite observation campaigns (GRIM1). Manuscr. Geodaet., 1, 41–69.Google Scholar
  2. Beutler G., Jäggi A., Mervart L. and Meyer U., 2011. The Celestial Mechanics Approach: application to data of GRACE mission. J. Geodesy, 84, 661–681, DOI: 10.1007/s00190-010-0402-6.CrossRefGoogle Scholar
  3. Brockmann J.M., Zehentner N., Höck E., Pail R., Loth I., Mayer-Gürr T. and Schuh W.D., 2014. EGM-TIM-RL05: An independent geoid with centimeter accuracy purely based on the GOCE mission. Geophys. Res. Lett., 41, 8089–8099, DOI: 10.1002/2014GL061904.CrossRefGoogle Scholar
  4. Colombo O.L., 1981. Numerical Methods for Harmonic Analysis on the Sphere. Report No. 310, Department of Geodetic Science, The Ohio State University, Columbus, OH.Google Scholar
  5. Drinkwater M.R., Floberghagen R., Haagmans R., Muzi D. and Popescu A., 2003. GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G., Drinkwater M.R., Rummel R. and von Steiger R. (Eds), Earth Gravity Field from Space — from Sensors to Earth Sciences. Space Sciences Series of ISSI, 17. Springer, Dordrecht, The Netherlands, 419–432, DOI: 10.1023/A:1026104216284.CrossRefGoogle Scholar
  6. Förste C., Bruinsma S.L., Abrikosov O., Lemoine J.M., Marty J.C., Flechtner F., Balmino G., Barthelmes F. and Biancale R., 2014. EIGEN-6C4: The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services (http://doi.org/10.5880/icgem.2015.1).Google Scholar
  7. Gatti A., Reguzzoni M., Sansò F. and Venuti G., 2013. The height datum problem and the role of satellite gravity models. J. Geodesy, 87, 5–22, DOI: 10.1007/s00190-012-0574-3.CrossRefGoogle Scholar
  8. Gerlach C. and Fecher T., 2012. Approximation of GOCE error variance-covariance matrix for least-squares estimation of height datum offsets. J. Geod. Sci., 2, 247–256, DOI: 10.2478/v10156-011-0049-0.Google Scholar
  9. Gerlach C. and Rummel R., 2013. Global height system unification with GOCE: a simulation study on the indirect bias term in the GBVP approach. J. Geodesy, 87, 57–67, DOI: 10.1007 /s00190-012-0579-y.CrossRefGoogle Scholar
  10. Gilardoni M., Reguzzoni M., Sampietro D. and Sansò F., 2013. Combining EGM2008 with GOCE gravity models. Bull. Geofis. Teor. Appl., 54, 285–302, DOI: 10.4430/bgta0107.Google Scholar
  11. Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. Freeman, San Francisco, CA.Google Scholar
  12. Jekeli C., 1988. The exact transformation between ellipsoidal and spherical harmonic expansions. Manuscr. Geodaet., 13, 106–113.Google Scholar
  13. Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report NASA/TP-1996/8-206861, NASA, Greenbelt, Maryland, MD.Google Scholar
  14. Lerch F.J., Wagner C.A., Smith D.E., Sandson M.L., Brownd J.E. and Richardson J.A., 1972. Gravitational Field Models for the Earth (GEM 1 & 2). Report X55372146, NASA Goddard Space Flight Center, Greenbelt, MD(http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19720021773.pdf).Google Scholar
  15. Mayer-Gürr T., Kurtenbach E. and Eicker A., 2010. ITG-Grace2010: the new GRACE gravity field release computed in Bonn. Geophys. Res. Abstracts, 12, EGU2010-2446.Google Scholar
  16. Pail R., Goiginger H., Schuh W.D., Höck E., Brockmann J.M., Fecher T., Gruber T., Mayer-Gürr T., Kusche J., Jäggi A. and Rieser D., 2010. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37, L20314, DOI: 10.1029/2010GL044906.Google Scholar
  17. Pail R., Bruinsma S.L., Migliaccio F., Förste C., Goiginger H., Schuh W.D., Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayerhofer R., Kransbutter I., Sansò F. and Tscherning C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843, DOI: 10.1007/s00190-011-0467-x.CrossRefGoogle Scholar
  18. Pavlis N.A., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406. DOI: 10.1029/2011JB008916.CrossRefGoogle Scholar
  19. Rapp R.H., 1975. Comparison of least squares and collocation estimated from potential coefficients. In: Brosowski B. and Martensen E. (Eds), Methoden und Verfahren der Mathematischen Physik, Band 14, Bibliographisches Institut, Zürich, Switzerland, 133–148, ISBN: 978-3411014828.Google Scholar
  20. Rapp R.H., 1984. The Determination of High Degree Potential Coefficient Expansions from the Combination of Satellite and Terrestrial Gravity Information. Department of Geodetic Science and Surveying, The Ohio State University, Columbus, OH.Google Scholar
  21. Reguzzoni M., 2004. GOCE: the Space-Wise Approach to Gravity Field Determination by Satellite Gradiometry. PhD Thesis, Politecnico di Milano, Italy.Google Scholar
  22. Reguzzoni M. and Sansò F., 2012. On the combination of high-resolution and satellite-only global gravity models. J. Geodesy, 86, 393–408, DOI: 10.1007/s00190-011-0526-3.CrossRefGoogle Scholar
  23. Reigber C., Bock R., Förste C., Grunwaldt L., Jakowski N., Lühr H., Schwintzer P. and Tilgner C., 1996. CHAMP Phase B Executive Summary. Scientific Technical Report, 96/13. Deutsches GeoForschungsZentrum, Potsdam, Germany.Google Scholar
  24. Reigber C., Schmidt R., Flechtner F., König R., Meyer U., Neumayer K.H., Schwintzer P. and Zhu S.Y., 2005. An Earth gravity field model complete to degree and order 150 from GRACE: EIGEN-GRACE02S. J. Geodyn., 39, 1–10, DOI: 10.1016/j.jog.2004.07.001.CrossRefGoogle Scholar
  25. Schwabe J. and Scheinert M., 2014. Regional geoid of the Weddell Sea, Antarctica, from heterogeneous ground-based gravity data. J. Geodesy, 88, 821–838, DOI: 10.1007/s00190-014-0724-x.CrossRefGoogle Scholar
  26. Shako R., Förste C., Abrykosov O., Bruinsma S., Marty J.-C., Lemoine J.-M., Flechtner F., Neumayer K.H., Dahle C., 2014. EIGEN-6C: A high-resolution Global Gravity Combination Model including GOCE data. In: Flechtner F., Sneeuw N. and Schuh W.-D. (Eds), Observation of the System Earth from Space — CHAMP, GRACE, GOCE and Future Missions. GEOTECHNOLOGIEN Science Report No. 20. Advanced Technologies in Earth Sciences, Springer-Verlag, Berlin, Heidelberg, Germany, 155–161, DOI: 10.1007/978-3-642-32135-1_20.CrossRefGoogle Scholar
  27. Sneeuw N. and Van Gelderen M., 1997. The Polar Gap. Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Springer-Verlag, Berlin, Heidelberg, Germany, 559–568.CrossRefGoogle Scholar
  28. Tapley B.D., Bettadpur S., Watkins M. and Reigber C., 2004. The gravity recovery and climate experiment: mission overview and early results. Geophys. Res. Lett., 31, L09607, DOI: 10.1029/2004GL019920.Google Scholar
  29. Tscherning C.C., 2001. Computation of spherical harmonic coefficients and their error estimates using least-squares collocation. J. Geodesy, 75, 12–18.CrossRefGoogle Scholar
  30. Weigelt M., van Dam T., Jäggi A., Prange L., Tourian M.J., Keller W. and Sneeuw N., 2013. Timevariable gravity signal in Greenland revealed by high-low satellite-to-satellite tracking. J. Geophys. Res., 118, 3848–3859, DOI: 10.1002/jgrb.50283.CrossRefGoogle Scholar
  31. Wenzel H.G., 1985. Hochauflösende Kugelfunktionsmodelle für das Gravitationspotential der Erde. Wissenschaftliche Arbeiten der Fachrichtung Geodäsie und Geoinformatik, No. 137, Geodätisches Institut Hannover, Hannover, Germany (in German).Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2016

Authors and Affiliations

  • Maddalena Gilardoni
    • 1
  • Mirko Reguzzoni
    • 1
  • Daniele Sampietro
    • 2
  1. 1.Department of Civil and Environmental Engineering (DICA)Politecnico di MilanoMilanoItaly
  2. 2.GReD s.r.l.Lomazzo, ComoItaly

Personalised recommendations