Studia Geophysica et Geodaetica

, Volume 59, Issue 4, pp 524–537 | Cite as

Towards the measurement of zero vertical gradient of gravity on the Earth’s surface

  • Pavol ZahorecEmail author
  • Ján Mikuška
  • Juraj Papčo
  • Ivan Marušiak
  • Roland Karcol
  • Roman Pašteka


It is well known that the vertical gradient of gravity measured on the Earth’s surface depends strongly on nearby topographical shapes. We simply inverted the problem and posed the question whether a zero vertical gradient can be observed using relative gravity meters and the classical tower method of measurement in appropriate terrain conditions. Extensively using the model of a vertical cone to simulate the real in-field conditions, we have found that reversed-cone-shaped topographic depressions represent the most perspective forms, which can contribute to extremely small values of the resulting vertical gradient. In one such form, namely a karstic sinkhole, we measured the value of −0.071 mGal/m (10−5 s−2). In addition, we successfully modeled this value using a detailed local digital elevation model. We thus conclude that zero vertical gradient of gravity should be observable by common means, also on the Earth’s surface, and not only underground within very dense rocks as some ores can be. Once this is verified it could represent a contribution to the theory of the Earth’s gravity field and its geophysical as well as geodetic applications.


normal gravity gradient synthetic topography model relative gravity measurement tower method sinkhole 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ager C.A. and Liard J.O., 1982. Vertical gravity gradient surveys: Field results and interpretations in British Columbia, Canada. Geophysics, 47, 919–925.CrossRefGoogle Scholar
  2. Antonov Yu.V., Zhavoronkin V.I. and Slyusarev S.V., 1996. Measurement of vertical increments of gravity above bodies of regular shape. Vestnik Voronezhskogo Universiteta, Seriya Geologitscheskaya, 2, 177–182 (in Russian).Google Scholar
  3. Bodemüller H., 1960. Measurement and evaluation of the vertical gradient of gravity. Z. Vermess., 4, 101–112 (in German).Google Scholar
  4. Breili K. and Rolstad C., 2009. Ground-based gravimetry for measuring small spatial-scale mass changes on glaciers. Ann. Glaciol., 50, 141–147.CrossRefGoogle Scholar
  5. Butler D.K., 1984a. Interval gravity-gradient determination concepts. Geophysics, 49, 828–832.CrossRefGoogle Scholar
  6. Butler D.K., 1984b. Microgravimetric and gravity gradient techniques for detection of subsurface cavities. Geophysics, 49, 1084–1096.CrossRefGoogle Scholar
  7. Casten U. and Gram C., 1989. Recent developments in underground gravity surveys. Geophys. Prospect., 37, 73–90.CrossRefGoogle Scholar
  8. Csapó G. and Völgyesi L., 2002. Determination and reliability estimation of vertical gradients based on test measurements. Reports on Geodesy, 69, Warsaw University of Technology, Warsaw, Poland, 303–308.Google Scholar
  9. Fajklewicz Z., 1976. Gravity vertical gradient measurements for the detection of small geologic and anthropogenic forms. Geophysics, 41, 1016–1030.CrossRefGoogle Scholar
  10. Fajklewicz Z., 2007. Applied Gravimetry. AGH University of Science and Technology Press, Cracow, Poland, 433 pp (in Polish).Google Scholar
  11. Gumert W.R., 1985. Advantages of continuous profiling airborne gravity surveys. Proceedings of the International Meeting on Potential Fields in Rugged Topography. Bulletin No. 7. Institute of Geophysics, University of Lausanne, Lausanne, Switzerland, 16–18.Google Scholar
  12. Hammer S., 1938. Investigations of the vertical gradient of gravity. Eos Trans. AGU, 19, 72–82, DOI:  10.1029/TR019i001p00072.CrossRefGoogle Scholar
  13. Hammer S., 1950. Density determinations by underground gravity measurements. Geophysics, 15, 637–652.CrossRefGoogle Scholar
  14. Hammer S., 1970. The anomalous vertical gradient of gravity. Geophysics, 35, 153–157.CrossRefGoogle Scholar
  15. Hammer S., 1981. Short Note: Magnitude of anomalies in the vertical gradient of gravity. Geophysics, 46, 1609–1610.CrossRefGoogle Scholar
  16. Hinze W.J., Aiken C., Brozena J., Coakley B., Dater D., Flanagan G., Forsberg R., Hildenbrand T., Keller G.R., Kellogg J., Kucks R., Li X., Mainville A., Morin R., Pilkington M., Plouff D., Ravat D., Roman D., Urrutia-Fucugauchi J., Véronneau M., Webring M. and Winester D., 2005. New standards for reducing gravity data: The North American gravity database. Geophysics, 70, J25–J32.CrossRefGoogle Scholar
  17. Hofmann-Wellenhof B. and Moritz H., 2005. Physical Geodesy. Springer-Verlag, Berlin, Germany, 403 pp.Google Scholar
  18. Hunt T.M., Sato T., Nakao T. and Takemura T., 1999. Improvements to microgravity monitoring — determinantion of the vertical gravity gradient. Geothermal Resources Council Transactions, 23, 419–423 ( Scholar
  19. Hunt T., Sugihara M., Sato T. and Takemura T., 2002. Measurement and use of the vertical gravity gradient in correcting repeat microgravity measurements for the effects of ground subsidence in geothermal systems. Geothermics, 31, 525–543.CrossRefGoogle Scholar
  20. Jacoby W. and Smilde P.L., 2009. Gravity Interpretation. Springer-Verlag, Berlin, Germany, 395 pp.Google Scholar
  21. Janle P., Makris J. and Menzel H., 1971. Experimental investigations of the vertical gradient of gravity. Bolletino di Geofisica Teorica ed Applicata, 13, 51–52, 254–263.Google Scholar
  22. Jiang Z., Pálinkáš V., Francis O., Jousset P., Mäkinen J., Merlet S., Becker M., Coulomb A., Kessler-Schulz K., Schulz H., Rothleitner Ch., Tisserand L. and Lequin D, 2012. Relative Gravity measurements during the 8th International Comparison of Absolute Gravimeters (2009). Metrologia, 49, 95–107.CrossRefGoogle Scholar
  23. Kumagai N., Abe E. and Yoshimura Y., 1960. Measurement of vertical gradient of gravity and its significance. Bolletino di Geofisica Teorica ed Applicata, 2, 607–630.Google Scholar
  24. Kuo J.T., Ottaviani M. and Singh S.K., 1969. Variations of vertical gravity gradient in New York City and Alpine, New Jersey. Geophysics, 34, 235–248.CrossRefGoogle Scholar
  25. LaFehr T. R. and Chan K., 1986. Discussion on “The normal vertical gradient of gravity” by J. H. Karl (Geophysics, 48, 1011–1013, July 1983). Geophysics, 51, 1505–1508.CrossRefGoogle Scholar
  26. Marušiak I. and Mikuška J., 2013. Pohanka_Cylinder/Cone, Program for Calculation of the Gravitational Effect of the Homogenous Vertical Cylinder, Cone or Frustum of Cone. G-Trend s.r.o., Bratislava, Slovakia (in Slovak).Google Scholar
  27. Marušiak I., Zahorec P., Papčo J., Pašteka R. and Mikuška J., 2013. Toposk, Program for the Terrain Correction Calculation. G-Trend s.r.o., Bratislava, Slovakia (in Slovak).Google Scholar
  28. Meurers B., 2001. Remarks on the discontinuity of the gravity gradient at the apex of a cone. Proceedings of the 8th International Meeting on Alpine Gravimetry, Leoben 2000. Österreichische Beiträge zu Meteorologie und Geophysik, 26, 181–186.Google Scholar
  29. Pohánka V., 1988. Optimum expression for computation of the gravity field of a homogenous polyhedral body. Geophys. Prospect., 36, 733–751.CrossRefGoogle Scholar
  30. Swain C.J., 1984. Discussion on “The normal vertical gradient of gravity” by J. H. Karl (Geophysics, 48, 1011–1013). Geophysics, 49, 1563.CrossRefGoogle Scholar
  31. Thyssen-Bornemisza S. and Stackler F.W., 1956. Observation of the vertical gradient of gravity in the field. Geophysics, 21, 771–779.CrossRefGoogle Scholar
  32. Zahorec, P., Papčo J., Mikolaj M., Pašteka R. and Szalaiová V, 2014. The role of near topography and building effects in vertical gravity gradients approximation. First Break, 32, 65–71.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2015

Authors and Affiliations

  • Pavol Zahorec
    • 1
    Email author
  • Ján Mikuška
    • 2
  • Juraj Papčo
    • 3
  • Ivan Marušiak
    • 2
  • Roland Karcol
    • 1
  • Roman Pašteka
    • 4
  1. 1.Division of Geophysics, Earth Science InstituteSlovak Academy of SciencesBanská BystricaSlovak Republic
  2. 2.G-trend s.r.o.BratislavaSlovak Republic
  3. 3.Department of Theoretical Geodesy, Faculty of Civil EngineeringSlovak University of TechnologyBratislavaSlovak Republic
  4. 4.Department of Applied end Environmental Geophysics, Faculty of Natural SciencesComenius UniversityBratislavaSlovak Republic

Personalised recommendations