Studia Geophysica et Geodaetica

, Volume 60, Issue 1, pp 91–111 | Cite as

Time-domain hyperbolic Radon transform for separation of P-P and P-SV wavefields

  • Xiaoxue Jiang
  • Fan Zheng
  • Haiqing Jia
  • Jun Lin
  • Hongyuan Yang


A time-domain hyperbolic Radon transform based method for separating multicomponent seismic data into P-P and P-SV wavefields is presented. This wavefield separation method isolates P-P and P-SV wavefields in the Radon panel due to their differences in slowness, and an inverse transform of only part of the data leads to separated wavefields. A problem of hyperbolic Radon transform is that it works in the time domain entailing the inversion of large operators which is prohibitively time-consuming. By applying the conjugate gradient algorithm during the inversion of hyperbolic Radon transform, the computational cost can be kept reasonably low for practical application. Synthetic data examples prove that P-P and P-SV wavefield separation by hyperbolic Radon transform produces more accurate separated wavefields compared with separation by high-resolution parabolic Radon transform, and the feasibility of the proposed separation scheme is also verified by a real field data example.


time-domain hyperbolic Radon transform multicomponent data wavefield separation conjugate gradient algorithm 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Al-anboori A., Baan M.V.D. and Kendall J.M., 2005. Approximate separation of pure-mode and converted waves in 3-C reflection seismics by τ-p transform. Geophysics, 70, V81–V86.CrossRefGoogle Scholar
  2. Amundsen L. and Robertsson J.O.A., 2014. Wave equation processing using finite-difference propagators, Part 1: Wavefield dissection and imaging of marine multicomponent seismic data. Geophysics, 79, T287–T300.CrossRefGoogle Scholar
  3. Cary P.W., 1998. The simplest discrete Radon transform. SEG Technical Program Expanded Abstracts 1998, 1999–2002, DOI:  10.1190/1.1820335.Google Scholar
  4. Curtis A. and Robertsson J.O.A., 2002. Volumetric wavefield recording and near-receiver group velocity estimation for land seismic data. Geophysics, 67, 1602–1611.CrossRefGoogle Scholar
  5. Dankbaar J.W.M., 1985. Separation of P- and S-waves. Geophys. Prospect., 33, 970–986.CrossRefGoogle Scholar
  6. Deng Z., Wang U., Sen M.K., He Y., Li K., Bai X., Zou X. and Cui S., 2010. A practical approach to mode-converted shear wave velocity analysis from 3C data. SEG Technical Program Expanded Abstracts 2010, 1724–1728, DOI:  10.1190/1.3513174.CrossRefGoogle Scholar
  7. Devaney A.J. and Oristaglio M.L., 1986. A plane-wave decomposition for elastic wave fields applied to the separation of P-waves and S-waves in vector seismic data. Geophysics, 51, 419–423.CrossRefGoogle Scholar
  8. Greenhalgh S.A., Mason I.M., Lucas E., Pant D. and Eames R.T., 1990. Controlled direction reception filtering of P- and S-waves in τ-p space. Geophys. J. Int., 100, 221–234.CrossRefGoogle Scholar
  9. Hampson D., 1986. Inverse velocity stacking for multiple elimination. J. Can. Soc. Explor. Geophys., 22, 44–55.Google Scholar
  10. Hestenes M.R. and Stiefel E., 1952. Methods of conjugate gradients for solving linear systems. Journal of Research of the National Bureau of Standards, 49, 409–436.CrossRefGoogle Scholar
  11. Jin S., Wu R.S., Xie X.B. and Ma Z.. Wave equation-based decomposition and imaging for multicomponent seismic data. J. Seism. Explor., 7, 145–158.Google Scholar
  12. Kostov C., 1990. Toeplitz structure in slant-stack inversion. SEG Technical Program Expanded Abstracts 1990, 1618–1621, DOI:  10.1190/1.1890075.CrossRefGoogle Scholar
  13. Li Q., 2001. High Resolution Hyperbolic Radon Transform Multiple Removal. M.Sc. Thesis. University of Alberta, Edmonton, Canada.Google Scholar
  14. Muijs R., Holliger K. and Robertsson J.O.A., 2002. Perturbation analysis of an explicit wavefield separation scheme for P- and S-waves. Geophysics, 67, 1972–1982.CrossRefGoogle Scholar
  15. Pestana R.C., Ursin B. and Stoffa P.L., 2011. Separate P- and SV-wave equations for VTI media. SEG Technical Program Expanded Abstracts 2010, 163–167, DOI:  10.1190/1.3627518.Google Scholar
  16. Robertsson J.O.A. and Curtis A., 2002. Wavefield separation using densely deployed three-component single-sensor groups in land surface-seismic recordings. Geophysics, 67, 1624–1633.CrossRefGoogle Scholar
  17. Sacchi M.D. and Ulrych T.J., 1995. High-resolution velocity gathers and offset space reconstruction. Geophysics, 60, 1169–1177.CrossRefGoogle Scholar
  18. Schalkwijk K.M., 2001. Decomposition of Multicomponent Ocean-Bottom Data into P- and S-Waves. Ph.D. Thesis, Delft University of Technology, Delft, The Netherlands.Google Scholar
  19. Schalkwijk K.M., Wapenaar C.P.A. and Verschuur D.J.,1998. Decomposition of multicomponent ocean-bottom data in two steps. SEG Technical Program Expanded Abstracts 1998, 1425–1428, DOI:  10.1190/1.1820175.CrossRefGoogle Scholar
  20. Schalkwijk K.M., Wapenaar C.P.A. and Verschuur D.J., 1999. Application of two-step decomposition to multicomponent ocean-bottom data: Theory and case study. J. Seism. Explor., 8, 261–278.Google Scholar
  21. Shewchuk J.R., 1994. An Introduction to the Conjugate Gradient Method without the Agonizing Pain. Carnegie Mellon University, Pittsburgh, PA.Google Scholar
  22. Sun R., McMechan G.A., Hsiao H. and Chow J., 2004. Separating P- and S-waves in prestack 3D elastic seismograms using divergence and curl. Geophysics, 69, 286–297.CrossRefGoogle Scholar
  23. Tessmer G. and Behle A., 1988. Common reflection point data-stacking technique for converted waves. Geophys. Prospect., 36, 671–688.CrossRefGoogle Scholar
  24. Thorson J.R., 1984. Velocity-Stack and Slant-Stack Inversion Methods. Ph.D. thesis, Stanford University, Stanford, CA.Google Scholar
  25. Thorson J.R. and Claerbout J.F., 1985. Velocity-stack and slant-stack stochastic inversion. Geophysics, 50, 2727–2741.CrossRefGoogle Scholar
  26. Trad D.O., Ulrych T.J. and Sacchi M.D., 2002. Accurate interpolation with high-resolution time-variant Radon transforms. Geophysics, 67, 644–656.CrossRefGoogle Scholar
  27. Wang Y., Singh S.C. and Barton P.J., 2002. Separation of P- and SV-wavefields from multicomponent seismic data in the τ-p domain. Geophys. J. Int., 151, 663–672.CrossRefGoogle Scholar
  28. Wapenaar C.P.A., Hermann P., Verschuur D.J. and Berkhout A.J., 1990. Decomposition of multicomponent seismic data into primary P- and S-wave responses. Geophys. Prospect., 38, 633–661.CrossRefGoogle Scholar
  29. Wilson M.R. and Ferguson R.J., 2010. Implicit and explicit preconditioning for least squares nonstationary phase shift. CREWES Research Report, 22, 1–13.Google Scholar
  30. Yilmaz O., 1987. Seismic Data Processing. Society of Exploration Geophysicists, Tulsa, OK, ISBN: 978-0931830402.Google Scholar
  31. Zhang M., Wang X. and Guo W., 2012. Instructor of Geological Field Practice in Xingcheng. Geology Publishing House, Beijing, China (in Chinese).Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2015

Authors and Affiliations

  • Xiaoxue Jiang
    • 1
  • Fan Zheng
    • 1
  • Haiqing Jia
    • 1
  • Jun Lin
    • 1
  • Hongyuan Yang
    • 1
  1. 1.College of Instrumentation & Electrical EngineeringJilin UniversityChangchunChina

Personalised recommendations