Studia Geophysica et Geodaetica

, Volume 61, Issue 1, pp 145–161 | Cite as

Role of single-domain magnetic particles in creation of inverse magnetic fabrics in volcanic rocks: A mathematical model study

  • František Hrouda
  • Josef Ježek


The role of single-domain (SD) magnetic particles in creation of inverse magnetic fabrics is investigated on simple mathematical models using a realistic estimate for SD intrinsic susceptibility. In contrast to the fraction created by multi-domain (MD) particles, in which the anisotropy of magnetic susceptibility (AMS) is controlled by both the grain AMS and intensity of the preferred orientation of the particles, the AMS of the SD fraction is controlled solely by the intensity of the preferred orientation. The degree of AMS of ensemble of SD grains with a preferred orientation is therefore much higher than that of the same ensemble of MD particles implying the existence of frequent inverse magnetic fabrics. However, the occurrence of inverse magnetic fabrics due to SD particles is more the exception than the rule. Consequently, the amounts of SD particles is probably in general low. Nevertheless, the presence of SD particles in amounts insufficient to create inverse magnetic fabrics may diminish the whole rock AMS substantially. This can be one of the reasons for relatively low AMS in volcanic rocks whose magnetic particles may be really small obeying the conditions for the existence of SD particles.


AMS of SD magnetic particles inverse magnetic fabric volcanic rocks 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Almqvist B.S.G., Bosshard S.A., Hirt A.M., Mattsson H.B. and Hetenyi G., 2012. Internal flow structures in columnar joited basalt from Hreppholar, Iceland: II. Magnetic anisotropy and rock magnetic properties. Bull. Volcanol., 74, 1667–1681, DOI: 10.1007/s00445-012-0622-0.CrossRefGoogle Scholar
  2. Borradaile G.J. and Gauthier D., 2001. AMS-detection of inverse fabrics without AARM, in ophiolite dikes. Geophys. Res. Lett., 28, 3517–3520.CrossRefGoogle Scholar
  3. Cañon-Tapia E., 1996. Single-grain versus distribution anisotropy: a simple three-dimensional model. Phys. Earth Planet. Inter., 94, 149–158.CrossRefGoogle Scholar
  4. Cañon-Tapia E., 2001. Factors affecting the relative importance of shape and distribution anisotropy in rocks: theory and experiments. Tectonophysics, 340, 117–131.CrossRefGoogle Scholar
  5. Cañon-Tapia E., 2004. Anisotropy of magnetic susceptibility of lava flows and dykes: A historical account. In: Martin-Hernandez F., Luneburg C.M., Aubourg C. and Jackson M. (Eds), Magnetic Fabric: Methods and Applications. Geological Society, London, Special Publications, 238, 205–225.Google Scholar
  6. Cañon-Tapia E., 2011. AMS in granites and lava flows: Two end members of a continuum? In: Petrovský E., Herrero-Bervera E., Harinarayana T. and Ivers D. (Eds), The Earth’s Magnetic Interior. IAGA Special Sopron Book Series I. Springer-Verlag, Heidelberg, Germany, 263–280.CrossRefGoogle Scholar
  7. Cañon-Tapia E. and Mendoza-Borunda R., 2014. Magnetic petrofabric of igneous rocks: Lessons from pyroclastic density current deposits and obsidians. J. Volcanol. Geotherm. Res., 289, 151–169.CrossRefGoogle Scholar
  8. Cañon-Tapia E., Walker G.P.L. and Herrero-Bervera E., 1994. Magnetic fabric and flow direction in basaltic Pahoehoe lava of Xitle Volcano, Mexico. J. Volcanol. Geotherm. Res., 65, 249–263.CrossRefGoogle Scholar
  9. Chadima M., Cajz V. and Týcová P., 2009. On the interpretation of normal and inverse magnetic fabric in dikes: examples from the Eger Graben, NW Bohemian Massif. Tectonophysics, 466, 47–63.CrossRefGoogle Scholar
  10. Coe R.S., 1966. Analysis of magnetic shape anisotropy using second-rank tensors. J. Geophys. Res., 71, 2637–2644.CrossRefGoogle Scholar
  11. Dragoni M., Lanza R. and Tallarico A., 1997. Magnetic anisotropy produced by magma flow: theoretical model and experimental data from Ferrar dolerite sills (Antarctica). Geophys. J. Int., 128, 230–240.CrossRefGoogle Scholar
  12. Dunlop D.J., 1984. A method of determining demagnetizing factor from multidomain hysteresis. J. Geophys. Res., 89, 553–558.CrossRefGoogle Scholar
  13. Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism. Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K., 573 pp.CrossRefGoogle Scholar
  14. Ernst R.E. and Baragar W.R.A., 1992. Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature, 356, 511–513.CrossRefGoogle Scholar
  15. Ferré E.C., 2002. Theoretical models of intermediate and inverse AMS fabrics. Geophys. Res. Lett., 29, 1127, DOI: 10.1029/2001GL01436.CrossRefGoogle Scholar
  16. Graham J.W., 1966. Significance of magnetic anisotropy in Appalachian sedimentary rocks. In: Steinhart J.S. and Smith T.J. (Eds), The Earth beneath the Continents. Geophysical Monograph Series, 10, American geophysical Union, Washington, D.C., 627–648.Google Scholar
  17. Grégoire V., de Saint Blanquat M., Nedelec A. and Bouchez J.-L., 1996. Shape anisotropy versus magnetic interactions of magnetic grains: experiments and application to AMS in granitic rocks. Geophys. Res. Lett., 18, 2193–2196.Google Scholar
  18. Grégoire V., Darrozes J., Gaillot P., Nedelec A. and Launeau P., 1998. Magnetite grain fabric and distribution anisotropy vs. rock magnetic fabric: a three-dimensional case study. J. Struct. Geol., 20, 937–944.CrossRefGoogle Scholar
  19. Hartstra R.L., 1982. Grain-size dependence of initial susceptibility and saturation magnetizationrelated parameters of four natural magnetites in the PSD-MD range. Geophys. J. R. Astr. Soc., 761, 447–495.Google Scholar
  20. Henry B., 1983. Interpretation quantitative de l’anisotropie de susceptibilité magnétique. Tectonophysics, 91, 165–177 (in French).CrossRefGoogle Scholar
  21. Henry B. and Daly L., 1983. From qualitative to quantitative magnetic anisotropy analysis: the prospect of finite strain calibration. Tectonophysics, 98, 327–336.CrossRefGoogle Scholar
  22. Hrouda F., 1980. Magnetocrystalline anisotropy of rocks and massive ores: a mathematical model study and its fabric implications. J. Struct. Geol., 2, 459–462.CrossRefGoogle Scholar
  23. Hrouda F., 1982. Magnetic anisotropy of rocks and its application in geology and geophysics. Geophys. Surv., 5, 37–82.CrossRefGoogle Scholar
  24. Hrouda F., 2009. Determination of field-independent and field-dependent components of anisotropy of susceptibility through standard AMS measurements in variable low fields I: Theory. Tectonophysics, 466, 114–122.CrossRefGoogle Scholar
  25. Hrouda F., Melka R. and Schulmann K., 1994. Periodical changes in fabric intensity during simple shear deformation and its implications for magnetic susceptibility anisotropy of sedimentary and volcanic rocks. Acta Univ. Carol. Geol., 38, 37–56.Google Scholar
  26. Hrouda F., Chlupáčová M. and Novák J.K., 2002. Variations in magnetic anisotropy and opaque mineralogy along a kilometer deep profile within a vertical dyke of the syenogranite porphyry at Cínovec (Czech Republic). J. Volcanol. Geotherm. Res., 113, 37–47.CrossRefGoogle Scholar
  27. Hrouda F., Chlupáčová M., Schulmann K., Šmíd J. and Závada P., 2005. On the effect of lava viscosity on the magnetic fabric intensity in alkaline volcanic rocks. Stud. Geophys. Geod., 49, 191–212.CrossRefGoogle Scholar
  28. Ihmlé P.F., Hirt A., Lowrie W. and Dietrich D., 1989. Inverse magnetic fabric in deformed limestones of the Morcles nappe, Switzerland. Geophys. Res. Lett., 16, 1383–1386.CrossRefGoogle Scholar
  29. Janák F., 1977. The determination of the content of ferromagnetic minerals in rock sample. Sborník geologických věd (J. Geol. Sci.), 14, 153–164.Google Scholar
  30. Jelínek V., 1981. Characterization of magnetic fabric of rocks. Tectonophysics, 79, T63–T67.CrossRefGoogle Scholar
  31. Ježek J. and Hrouda F., 2000. The relationship between the Lisle orientation tensor and the susceptibility tensor. Phys. Chem. Earth A, 25, 469–474.CrossRefGoogle Scholar
  32. Lisle R.J., 1985. The use of the orientation tensor for the description and statistical testing of fabrics. J. Struct. Geol., 7, 115–117.CrossRefGoogle Scholar
  33. Nagata T., 1961. Rock Magnetism. Maruzen, Tokyo, Japan.Google Scholar
  34. Newell A.J., Williams W. and Dunlop D.J., 1993. A generalization of the demagnetizing tensor for nonuniform magnetization. J. Geophys. Res., 98, 9551–9555.CrossRefGoogle Scholar
  35. Osborn J.A., 1945. Demagnetizing factors of the general ellipsoid. Phys. Rev., 67, 351–357.CrossRefGoogle Scholar
  36. Owens W.H., 1974. Mathematical model studies on factors affecting the magnetic anisotropy of deformed rocks. Tectonophysics, 24, 115–131.CrossRefGoogle Scholar
  37. Parry L.G., 1965. Magnetic properties of dispersed magnetic powders. Phil. Mag., 11, 303–312.CrossRefGoogle Scholar
  38. Raposo M.I.B. and Ernesto M., 1995. Anisotropy of magnetic susceptibility in the Ponta Grossa dyke swarm (Brazil) and its relationship with magma flow direction. Phys. Earth Planet. Inter., 87, 183–196.CrossRefGoogle Scholar
  39. Rochette P., 1988. Inverse magnetic fabric in carbonate-bearing rocks. Earth Planet. Sci. Lett., 90, 229–237.CrossRefGoogle Scholar
  40. Rochette P., Aubourg C. and Perrin M., 1999. Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics, 307, 219–234.CrossRefGoogle Scholar
  41. Rochette P., Jackson M. and Aubourg C., 1992. Rock magnetism and the interpretation of anisotropy of magnetic susceptibility. Rev. Geophys., 30, 209–226.CrossRefGoogle Scholar
  42. Scheidegger A.E., 1965. On the statistics of the orientation of bedding planes, grain axes, and similar sedimentological data. U.S. Geol. Surv. Prof. Pap., 525-C, 164–167.Google Scholar
  43. Stacey F.D. and Benerjee S.K., 1974. The Physical Principles of Rock Magnetism. Elsevier, Amsterdam, The Netherlands, 195 pp.Google Scholar
  44. Stephenson A., 1994. Distribution anisotropy: two simple models for magnetic lineation and foliation. Phys. Earth Planet. Inter., 82, 49–53.CrossRefGoogle Scholar
  45. Stephenson A., Sadikun S. and Potter D.K., 1986. A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals. Geophys. J. R. Astr. Soc., 84, 185–200.CrossRefGoogle Scholar
  46. Stoner E.C., 1945. The demagnetizing factors for ellipsoid. Phil. Mag., 36, 803–820.CrossRefGoogle Scholar
  47. Studýnka J., Chadima M. and Suza P., 2014. Fully automated measurement of anisotropy of magnetic susceptibility using 3D rotator. Tectonophysics, 629, 6–13.CrossRefGoogle Scholar
  48. Tarling D.H. and Hrouda F. 1993. The Magnetic Anisotropy of Rocks. Chapman & Hall, London, U.K., 217 pp.Google Scholar
  49. Uyeda S., Fuller M.D., Belshé J.C. and Girdler R.W., 1963. Anisotropy of magnetic susceptibility of rocks and minerals. J. Geophys. Res., 68, 279–292.CrossRefGoogle Scholar
  50. Worm H.-U., 1998. On the superparamagnetic-stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int., 133, 201–206.CrossRefGoogle Scholar
  51. Worm H.-U. and Jackson M., 1999. The superparamagnetism of Yucca Mountain Tuff. J. Geophys. Res., 104, 25415–25425.CrossRefGoogle Scholar
  52. Winkler A., Florindo F. and Sagnotti L., 1996. Inverse to normal magnetic fabric transition in an upper Miocene marly sequence from Tuscany, Italy. Geophys. Res. Lett., 23, 909–912.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2017

Authors and Affiliations

  1. 1.AGICO Ltd.BrnoCzech Republic
  2. 2.Faculty of SciencesCharles UniversityPraha 2Czech Republic

Personalised recommendations