Advertisement

Studia Geophysica et Geodaetica

, Volume 59, Issue 4, pp 554–577 | Cite as

Directional results and absolute archaeointensity determination by the classical Thellier and the multi-specimen DSC protocols for two kilns excavated at Osterietta, Italy

  • Evdokia TemaEmail author
  • Pierre Camps
  • Enzo Ferrara
  • Thierry Poidras
Article

Abstract

We present a detailed rock-magnetic and archaeomagnetic study of two brick kilns, named OSA and OSB, discovered at the location of Osterietta, in northern Italy. The magnetic properties of representative samples have been investigated to identify the nature of the magnetic carriers, their domain state and thermal stability, and investigate their suitability for archaeomagnetic determinations. Thermally stable, mainly pseudosingle domain (PSD) magnetite is identified as the main magnetic carrier. The full geomagnetic field vector has been determined for the two kilns, including directional and intensity analysis. Archaeointensities have been recovered with both the classical Thellier and the multi-specimen protocols. The multi-specimen procedure was performed with a very fast-heating oven developed at Montpellier, France. A Matlab® code for anisotropy correction during the Thellier experiment is provided. The archaeointensity results obtained from both techniques for the OSA kiln are of high quality and in good mutual agreement. For the OSB kiln, Thellier results are characterized by large standard deviation and the multi-specimen (MSP) technique was not successful. The obtained full geomagnetic field vector (declination, inclination and intensity) has been used for the archaeomagnetic dating of the two structures suggesting that the OSA kiln was for the last time used between 1761?1841 A.D. and the OSB kiln between 1752?1831 A.D., at 95% probability. This study shows that intensity determinations do not restrict the dating results when referring to the last few centuries, as this period is characterized by very small intensity variations.

Keywords

secular variation geomagnetic field vector archaeomagnetic dating Italy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biggin A.J. and Poidras T., 2006. First-order symmetry of weak-field partial thermoremanence in multi-domain ferromagnetic grains. 1. Experimental evidence and physical implications. Earth Planet. Sci. Lett., 245, 438–453, DOI:  10.1016/j.epsl.2006.02.035.CrossRefGoogle Scholar
  2. Camps P., Singer B., Carvallo C., Goguitchaichvili A., Fanjat G. and Allen B., 2011. The Kamikatsura event and the Matuyama–Brunhes reversal recorded in lavas from Tjornes peninsula, northern Iceland. Earth Planet. Sci. Lett., 310, 33–44, DOI:  10.1016/j.epsl.2011.07.026.CrossRefGoogle Scholar
  3. Casas L., Linford P. and Shaw J., 2007. Archaeomagnetic dating of Dogmersfield Park brick kiln (Southern England). J. Archeol. Sci., 34, 205–213.CrossRefGoogle Scholar
  4. Coe R.S., Grommé S. and Mankinen A., 1978. Geomagnetic paleointensities from radiocarbondated lava flows on Hawai and the question of the Pacific nondipole low. J. Geophys. Res., 83, 1740–1756.CrossRefGoogle Scholar
  5. Dekkers M. J. and Böhnel H.N., 2006. Reliable absolute palaeointensities independent of magnetic domain state. Earth Planet. Sci. Lett., 248, 508–517, DOI:  10.1016/j.epsl.2006.05.040.CrossRefGoogle Scholar
  6. De Marco E., Spassov S., Kondopoulou D., Zananiri I. and Gerofoka E., 2008. Archaeomagnetic study and dating of a Hellenistic site in Katerini (N. Greece). Phys. Chem. Earth, 33, 481–495.CrossRefGoogle Scholar
  7. Dunlop D.J., and Ozdemir O., 2000. Effect of grain size and domain state on thermal demagnetization tails. Geophys. Res. Lett., 27, 1311–1314.CrossRefGoogle Scholar
  8. Fabian K. and Leonhardt R., 2010. Multiple-specimen absolute paleointensity determination: an optimal protocol including pTRM normalization, domain-state correction, and alteration test. Earth Planet. Sci. Lett., 207, 84–94.CrossRefGoogle Scholar
  9. Fanjat G., 2012. Les fluctuations du champ magnétique terrestre: des variations séculaires récentes aux renversements. Available online at https://tel.archives-ouvertes.fr/tel-00719380 (in French).Google Scholar
  10. Fanjat G., Camps P., Alva-Valdivia L., Sougrati M., Cuevas-Garcia M. and Perrin M., 2013. First archaeointensity determinations on Maya incense burners from palenque temples, Mexico: new data to constrain the Mesoamerica secular variation curve. Earth Planet. Sci. Lett., 363, 168–180.CrossRefGoogle Scholar
  11. Fisher R.A., 1953. Dispersion on a sphere. Proc. R. Soc. London A, 217, 295–305.CrossRefGoogle Scholar
  12. Gómez-Paccard M. and Beamud E., 2008. Recent achievements in archaeomagnetic dating in the Iberian Peninsula: application to Roman and Mediaeval Spanish structures. J. Archeol. Sci., 35, 1389–1398.CrossRefGoogle Scholar
  13. Herries A., Kovacheva M. and Kostadinova M., 2008. Mineral magnetism and archaeomagnetic dating of a mediaeval oven from Zlatna Livada, Bulgaria. Phys. Chem. Earth, 33, 496–510.CrossRefGoogle Scholar
  14. Holland P.W. and Welsch R.E., 1977. Robust Regression using iteratively reweighted least-squares. Commun. Stat.-Theory Methods, A6, 813–827.CrossRefGoogle Scholar
  15. Jordanova N., Kovacheva M. and Kostadinova M., 2004. Archaeomagnetic investigation and dating of Neolithic archaeological site (Kovachevo) from Bulgaria. Phys. Earth Planet. Int., 147, 89–102.CrossRefGoogle Scholar
  16. Kirschvink J.L., 1980. The least-square line and plane and the analysis of palaeomagnetic data. Geophys. J. R. Astron. Soc., 62, 699–718.CrossRefGoogle Scholar
  17. Leonhardt R., Heunemann C. and Krása D., 2004. Analysing absolute paleointensity determinations: acceptance criteria and the software Thelliertool4.0. Geochem. Geophys. Geosyst., 5, DOI:  10.1029/2004GC000807.
  18. Lowrie W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett., 17, 159–162.CrossRefGoogle Scholar
  19. Marotta A., 1991. La cittadella di Alessandria: Una fortezza per il territorio dal Settecento all’Unità. SO.G.ED. Edizioni, Alessandria, pp. 170 (in Italian).Google Scholar
  20. Pavón-Carrasco F.J., Osete M.L., Torta J.M. and Gaya-Piqué L.R., 2009. A regional archaeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: applications to archaeomagnetic dating. Geochem. Geophys. Geosyst., 10, Q03013, DOI:  10.1029/2008GC002244.CrossRefGoogle Scholar
  21. Pavón-Carrasco F.J., Rodriguez-Gonzalez J., Osete M.L. and Torta J., 2011. A Matlab tool for archaeomagnetic dating. J. Archeol. Sci., 38, 408–419.CrossRefGoogle Scholar
  22. Prévot M., Mankinen E.A., Coe R.S. and Grommé C., 1985. The Steens mountain (Oregon) geomagnetic polarity transition 2. Field intensity variations and discussion on reversal models. J. Geophys. Res., 90, 10417–10448.Google Scholar
  23. Schnepp E. and Lanos P., 2006. A preliminary secular variation reference curve for archaeomagnetic dating in Austria. Geophys. J. Int., 166, 91–96.CrossRefGoogle Scholar
  24. Selkin P.A. and Tauxe L., 2000. Long-term variations in palaeointensity. Philos. Trans. R. Soc. AMath. Phys. Eng. Sci., 358, 1065–1088.CrossRefGoogle Scholar
  25. Tema E. and Lanza R., 2008. Archeaomagnetic study of a lime kiln at Bazzano (Northern Italy). Phys. Chem. Earth, 33, 534–543.CrossRefGoogle Scholar
  26. Tema E., 2013. Detailed archaeomagnetic study of a ceramic workshop at Kato Achaia: New directional data and archaeomagnetic dating in Greece. Bull. Geol. Soc. Greece, XLVII, No 3, 1279–1288.Google Scholar
  27. Tema E., Fantino F., Ferrara E., Lo Giudice A., Morales J., Goguitchaichvili A., Camps P., Barello F. and Gulmini M., 2013. Combined archaeomagnetic and thermoluminescence study of a brick kiln excavated at Fontanetto Po (Vercelli, Northern Italy). J. Archeol. Sci., 40, 2025–2035.CrossRefGoogle Scholar
  28. Tema E., Fantino F., Ferrara E., Allegretti S., Lo Giudice A., Re A., Barello F., Vella S., Cirillo L. and Gulmini M., 2014. Archaeological, archaeomagnetic and thermoluminescence investigation of a baked clay kiln excavated at Chieri, northern Italy: contribution to the rescue of our cultural heritage. Ann. Geophys., 57, G0548, DOI:  10.4401/ag-6611.Google Scholar
  29. Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Geophys., 15, 285–376 (in French).Google Scholar
  30. Veitch R.J., Hedley I.G. and Wagner J.J., 1984. An investigation of the intensity of the geomagnetic field during Roman times using magnetically anisotropic bricks and tiles. Archeol. Sci., 37, 359–373.Google Scholar
  31. Venturino Gambari M., Crosetto A. and Prosperi R., 2013. Alessandria, località Osterietta: Rinvenimento di fornaci postmedievali. Quaderni della Soprintendenza Archeologica del Piemonte, 28, 187–189 (in Italian).Google Scholar
  32. Zijderveld J., 1967. AC demagnetization of rocks: analysis of results. In: Collinson D., Creer K. and Runcorn S. (Eds), Methods in Paleomagnetism. Elsevier, New York, 254–256.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2015

Authors and Affiliations

  • Evdokia Tema
    • 1
    Email author
  • Pierre Camps
    • 2
  • Enzo Ferrara
    • 3
  • Thierry Poidras
    • 2
  1. 1.Dipartimento di Scienze della TerraUniversità degli Studi di TorinoTorinoItaly
  2. 2.Géosciences MontpellierCNRS and Université Montpellier 2MontpellierFrance
  3. 3.Istituto Nazionale di Ricerca MetrologicaTorinoItaly

Personalised recommendations