Advertisement

Studia Geophysica et Geodaetica

, Volume 60, Issue 4, pp 747–762 | Cite as

Seasonal and diurnal variability of pressure fluctuation in the infrasound frequency range observed in the Czech microbarograph network

  • Tereza Šindelárová
  • Michal Kozubek
  • Jaroslav Chum
  • Kateřina Potužníková
Article

Abstract

Infrasound environments in the Czech microbarograph network were studied. Reference Fourier amplitude spectra were calculated from data measured at three microbarograph sites of the network in May 2011-April 2012; directional analysis of infrasound arrivals in the frequency band 0.15-0.4 Hz was performed for the microbarograph array at Panská Ves in May 2014-April 2015. Diurnal, seasonal and site-to-site variability of the reference spectra was evaluated. Site-to-site variability is influenced by the location of the respective sensors in the open air and inside the observatory buildings and by local noise phenomena like wind turbines. Diurnal variability is well developed in summer with maximum ambient noise levels during the daytime and minima at night. Seasonal variability is observed at night with maxima in winter and minima in summer. Wind and wind eddies seem to be an important source of ambient noise in measurements in the Czech microbarograph network. A distinct spectral peak occurs near 0.2 Hz with amplitudes by about one order of magnitude higher in winter than in summer. Its seasonal variability is related to seasonal propagation of microbaroms from the source region in the Northern Atlantic.

Keywords

infrasound environments Czech microbarograph network seasonal and diurnal variability 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Assink J.D., Waxler R., Smets P. and Evers L.G., 2014. Bidirectional infrasonic ducts associated with sudden stratospheric warming events. J. Geophys. Res., 119, 1040–1153, DOI: 10.1002/2013JD021062.Google Scholar
  2. Bowman J.R., Baker G.E. and Bahavar M., 2005. Ambient infrasound noise. Geophys. Res. Lett., 32, L09803, DOI: 10.1029/2005GL022486.CrossRefGoogle Scholar
  3. Brázdil R, Štekl J., Budíková M., Dobrovolný P., Fišák J., Kolár M., Prošek P., Sokol Z., Štepánek P., Štepánková P. and Zacharov P., 1999. Klimatické pomery Milešovky (Climate on Milešovka). 1st Edition. Academia, Prague, Czech Republic (in Czech).Google Scholar
  4. Campus P. and Christie D.R., 2010. Worldwide Observations of Infrasonic Waves. In: Le Pichon A., Blanc E. and Hauchecorne A. (Eds), Infrasound Monitoring for Atmospheric Studies. Springer-Verlag, Berlin, Germany, 185–234.CrossRefGoogle Scholar
  5. Cansi Y., 1995. An automatic seismic event processing for detection and location: The P.M.C.C. method. Geophys. Res. Lett., 22, 1021–1024, DOI: 10.1029/95GL00468.CrossRefGoogle Scholar
  6. Christie D.R. and Campus P., 2010. The IMS Infrasound Network: Design and Establishment of Infrasound Stations. In: Le Pichon A., Blanc E. and Hauchecorne A. (Eds), Infrasound Monitoring for Atmospheric Studies. Springer-Verlag, Berlin, Germany, 29–75.CrossRefGoogle Scholar
  7. Donn W.L. and Rind D., 1971. Natural infrasound as an atmospheric probe. Geophys. J. R. Astr. Soc., 26, 111–133.CrossRefGoogle Scholar
  8. Evers L.G. and Haak H.W., 2010. The Characteristics of Infrasound, its Propagation and Some Early History. In: Le Pichon A., Blanc E. and Hauchecorne A. (Eds), Infrasound Monitoring for Atmospheric Studies. Springer-Verlag, Berlin, Germany, 3–27.CrossRefGoogle Scholar
  9. Evers L.G. and Siegmund P., 2009. Infrasonic signature of the 2009 major sudden stratospheric warming. Geophys. Res. Let., 36, L23808, DOI: 10.1029/2009GL041323.CrossRefGoogle Scholar
  10. Evers L.G., van Geyt A.R.J., Smets P. and Fricke J.T., 2012. Anomalous infrasound propagation in a hot stratosphere and the existence of extremely small shadow zones. J. Geophys. Res., 117, D06120, DOI: 10.1029/2011JD017014.CrossRefGoogle Scholar
  11. Garces M., Willis M., Hetzer C., Le Pichon A. and Drob D., 2004. On using ocean swells for continuous infrasonic measurements of winds and temperature in the lower, middle, and upper atmosphere. Geophys. Res. Lett., 31, L19304, DOI: 10.1029/2004GL020696.CrossRefGoogle Scholar
  12. Garces M., Willis M. and Le Pichon A., 2010. Infrasonic observations of open ocean swells in the Pacific: Deciphering the song of the sea. In: Le Pichon A., Blanc E. and Hauchecorne A. (Eds.), Infrasound Monitoring for Atmospheric Studies. Springer-Verlag, Berlin, Germany, 29–75.Google Scholar
  13. Green D.N. and Bowers D., 2010. Estimating the detection capability of the International Monitoring System infrasound network. J. Geophys. Res., 115, D18116, DOI: 10.1029/2010JD014017.CrossRefGoogle Scholar
  14. Landes M., Ceranna L., Le Pichon A. and Matoza R.S., 2012. Localization of microbarom sources using the IMS infrasound network. J. Geophys. Res., 117, D06102, DOI: 10.1029/2011JD016684.CrossRefGoogle Scholar
  15. Landes M., Shapiro N., Le Pichon A., Hillers G. and Campillo M., 2014. Explaining global patterns of microbarom observations with wave action models. Geophys. J. Int., 199, 1328–1337, DOI: 10.1093/gji/ggu324.CrossRefGoogle Scholar
  16. Laštovicka J., 1974. Relationship between microseisms, geomagnetic activity and ionospheric absorption of radio waves. Stud. Geophys. Geod., 18, 307–309.CrossRefGoogle Scholar
  17. Le Pichon A. and Cansi Y., 2003. PMCC for infrasound data processing. InfraMatics, 2, 1–9.Google Scholar
  18. Le Pichon A., Ceranna L., Garces M., Drob D. and Millet C., 2006. On using infrasound from interacting ocean swells for global continuous measurements of winds and temperature in the stratosphere. J. Geophys. Res., 111, D11106, DOI: 10.1029/2005JD006690.CrossRefGoogle Scholar
  19. Le Pichon A., Vergoz J., Herry P. and Ceranna L., 2008. Analysing the detection capability of infrasound arrays in Central Europe. J. Geophys. Res., 113, D12115, DOI: 10.1029/2007JD009509.CrossRefGoogle Scholar
  20. Le Pichon A., Vergoz J., Blanc E., Guilbert J., Ceranna L., Evers L. and Brachet N., 2009. Assessing the performance of the International Monitoring System’s Infrasound network: Geographical coverage and temporal variabilities. J. Geophys. Res., 114, D08112, DOI: 10.1029/2008JD010907.CrossRefGoogle Scholar
  21. Matoza R.S., Landes M., Le Pichon A., Ceranna L. and Brown, D., 2013. Coherent ambient infrasound recorded by the International Monitoring System. Geophys. Res. Lett., 40, 429–433, DOI: 10.1029/2012GL54329.CrossRefGoogle Scholar
  22. Nový R., 2009. Hluk a Chvení (Noise and Vibrations). 3rd Edition. Ceské vysoké ucení technické v Praze (Czech Technical University in Prague), Prague, Czech Republic (in Czech).Google Scholar
  23. Pilger C., Ceranna L., Ross J.O, Le Pichon A., Mialle P. and Garces M.A., 2015. CTBT infrasound network performance to detect the 2013 Russian fireball event. Geophys. Res. Lett., 42, 2523–2531, DOI: 10.102/2015GL063482.CrossRefGoogle Scholar
  24. Smets P.S.M. and Evers L.G., 2014. The life cycle of a sudden stratospheric warming from infrasonic ambient noise observations. J. Geophys. Res., 119, 12084–12099, DOI: 10.1002/2014JD021905.Google Scholar
  25. Whitaker R.W. and Mutschlecner J.P, 2008. A comparison of infrasound signals refracted from stratospheric and thermospheric altitudes. J. Geophys. Res., 113. D08117, DOI: 10.1029/2007JD008852.CrossRefGoogle Scholar
  26. Zátopek A., 1963. Über einige Ergebnisse der statistischen Periodenerforschung von europäischen Mikroseismen. Stud. Geophys. Geod., 7, 164–182 (in German).CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2016

Authors and Affiliations

  • Tereza Šindelárová
    • 1
  • Michal Kozubek
    • 1
  • Jaroslav Chum
    • 1
  • Kateřina Potužníková
    • 1
  1. 1.Institute of Atmospheric PhysicsThe Czech Academy of SciencesPrague 4Czech Republic

Personalised recommendations