Advertisement

Studia Geophysica et Geodaetica

, Volume 59, Issue 2, pp 294–308 | Cite as

Limits of out-of-phase susceptibility in magnetic granulometry of rocks and soils

  • František Hrouda
  • Jiří Pokorný
  • Martin Chadima
Article

Abstract

Frequency-dependent magnetic susceptibility enables the amount of newly created ultrafine superparamagnetic particles to be assessed, being therefore important tool for environmental and palaeoclimatologic research. It was shown recently that the out-of-phase susceptibility is also able to provide this information. In the present paper we investigate the accuracy of the measurement of the out-of-phase susceptibility at all three frequencies of the MFK1-FA Kappabridge as well as accuracy in the determination of the XON parameter, which is the microscopic equivalent of the XFN parameter characterizing the frequency-dependent susceptibility. The method is tested on samples of cave sediments, a loess/palaeosoil sequence, and artificial specimens. The detection limit in determining the XON parameter is about 3%, which is only slightly worse than the reproducibility of the XFN parameter (about 1%). A new measuring technique is proposed making the accuracy in determination of the XON parameter comparable to that in determining XFN parameter. The main advantage of the out-of-phase susceptibility is that it is measured simultaneously with the in-phase susceptibility during one measuring process. This is very useful in working with large specimen collections as in palaeoclimatology and environmental magnetism.

Keywords

out-of-phase susceptibility frequency-dependent susceptibility measurement accuracy environmetal magnetism loess soil paleoclimatic reconstruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bowles J., Jackson M., Chen A. and Solheid P., 2009. Interpretation of low-temperature data, part 1: Superparamagnetism and paramagnetism. IRM Quarterly, 19(1), 7–11.Google Scholar
  2. Dearing J.A., Dann R.J.L., Hay K., Lees J.A., Loveland P.J., Maher B.A. and O’Grady K., 1996. Frequency-dependent susceptibility measurements of environmental materials. Geophys. J. Int., 124, 228–240.CrossRefGoogle Scholar
  3. Egli R., 2009. Magnetic susceptibility measurements as a function of temperature and frequency I: inversion theory. Geophys. J. Int., 177, 395–420.CrossRefGoogle Scholar
  4. Heller F. and Evans M.E., 2003. Environmental Magnetism: Principles and Applications of Enviromagnetics. Academic Press, New York.Google Scholar
  5. Hrouda F., 2002. The use of the anisotropy of magnetic remanence in the resolution of the anisotropy of magnetic susceptibility into its ferromagnetic and paramagnetic components. Tectonophysics, 347, 269–281.CrossRefGoogle Scholar
  6. Hrouda F., 2011. Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophys. J. Int., 187, 1259–1269.CrossRefGoogle Scholar
  7. Hrouda F. and Pokorný J., 2011. Extremely high demands for measurement accuracy in precise determination of frequency-dependent magnetic susceptibility of rocks and soils. Stud. Geophys. Geod., 55, 667–681.CrossRefGoogle Scholar
  8. Hrouda F., Chlupáčová M. and Pokorný J., 2006. Low-field variation of magnetic susceptibility measured by the KLY-4S Kappabridge and KLF-4A Magnetic Susceptibility Meter: Accuracy and interpretational programme. Stud. Geophys. Geod., 50, 283–298.CrossRefGoogle Scholar
  9. Hrouda F., Pokorný J., Ježek J. and Chadima M., 2013. Out-of-phase magnetic susceptibility of rocks and soils: a rapid tool for magnetic granulometry. Geophys. J. Int., 194, 170–181, DOI:  10.1093/gji/ggt097.CrossRefGoogle Scholar
  10. Jackson M., 2003-4. Imaginary susceptibility, a primer. IRM Quarterly, 13(1), 10–11 (http://www.irm.umn.edu/quarterly/irmq13-4.pdf).Google Scholar
  11. Jackson M., Moskowitz B., Rosenbaum J. and Kissel C., 1998. Field-dependence of AC susceptibility in titanomagnetites. Earth Planet. Sci. Lett., 157, 129–139.CrossRefGoogle Scholar
  12. Le Borgne E., 1955. Susceptibilité magnétique anomale du sol superficiel. Ann. Geophys., 11, 399–419 (in French).Google Scholar
  13. Maher B.A. and Thompson R. (Eds), 1999. Quarternary Climates, Environments, and Magnetism. Cambridge University Press, New York.CrossRefGoogle Scholar
  14. Neél L., 1949. Théorie du trainage magnétique des ferrimagnétiques en grains fins avec applications aus terres cuites. Ann. Géophys., 5, 99–136 (in French).Google Scholar
  15. Pokorný J., Pokorný P., Suza P. and Hrouda F., 2011. A multi-function Kappabridge for high precision measurement of the AMS and the variations of magnetic susceptibility with field, temperature and frequency. In: Petrovský E., Herrero-Bervera E., Harinarayana T. and Ivers D. (Eds), The Earth’s Magnetic Interior. IAGA Special Sopron Book Series, Volume 1. Springer-Verlag, Heidelberg, Germany, 292–301.Google Scholar
  16. Riquier L., Averbuch O., Devleeschower X. and Tribovillard N., 2010. Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Fammenian boundary sections from Northern Africa and Western Europe: implications for paleoenvironmental reconstructions. Int. J. Earth Sci., 99 (Suppl. 1), 57–73.CrossRefGoogle Scholar
  17. Worm H.-U., 1998. On the superparamagnetic — stable single domain transition for magnetite, and frequency dependence of susceptibility. Geophys. J. Int., 133, 201–206.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2014

Authors and Affiliations

  • František Hrouda
    • 1
    • 2
  • Jiří Pokorný
    • 1
  • Martin Chadima
    • 1
    • 3
  1. 1.AGICO Ltd.BrnoCzech Republic
  2. 2.Institute of Petrology and Structural GeologyCharles University in PraguePraha 2Czech Republic
  3. 3.Institute of GeologyAcademy of Sciences of Czech RepublicPraha 6Czech Republic

Personalised recommendations