Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

SGNoise - a tool for the ambient noise level analysis at superconducting gravimeter stations

Abstract

The SGNoise represents a web tool for the near real-time analysis of data from superconducting gravimeters (SGs). Gravity residuals are computed on daily basis from raw SG data (1-s sampling rate) and analysed/visualized in time and frequency domain. It fulfils the main goal of the SGNoise — automatic data quality control of continuously operating geophysical instruments which provides a helpful service for operators and data users. The data quality quantification is represented by the evaluation of ambient noise level at SG stations by spectral analysis of gravity residuals and its visualization through spectrograms and probability density functions. Among others, it provides a possibility for comparison of noise levels at SG stations as demonstrated for Pecný, Wettzell and Strasbourg stations which are included in the SGNoise service at http://oko.asu.cas.cz/grav/. The SGNoise program package is written in PHP5 scripting language using the GD Graphics Library. Procedures used for data processing and analysis are consistent with previous works on noise level analysis at SG stations.

This is a preview of subscription content, log in to check access.

References

  1. Abd El-Gelil M. and Pagiatakis S., 2009. Least squares self-coherence for sub-nGal signal detection in the superconducting gravimeter records. J. Geodyn., 48, 310–315.

  2. Abe M., Kroner C., Förste C., Petrovic S., Barthelmes F., Weise A., Güntner A., Creutzfeldt B., Jahr T., Jentzsch G., Wilmes H. and Wziontek H., 2012. A comparison of GRACE-derived temporal gravity variations with observations of six European superconducting gravimeters. Geophys. J. Int., 191, 545–556,. DOI: 10.1111/j.1365-246X.2012.05641.x.

  3. Baker T.F. and Bos M.S., 2003. Validating Earth and ocean tide models using tidal gravity measurements. Geophys. J. Int., 152, 468–485.

  4. Banka D., Crossley D. and Jentzsch G., 1998. Investigations of super-conducting gravimeter records in the frequency range of the free oscillations of the Earth — the noise magnitude. In: Ducarme B. (Ed.), Proceedings of the 13th International Symposium on Earth Tides. Observatoire Royal de Belgique, Brussels, Belgium, 641–649.

  5. Banka D. and Crossley D., 1999. Noise levels of superconducting gravimeters at seismic frequencies. Geophys. J. Int., 139, 87–97.

  6. Berger J. and Davis P., 2004. Ambient Earth Noise: A survey of the Global Seismographic Network. J. Geophys. Res., 119, B11307, DOI: 10.1029/2004JB003408.

  7. Cooley J.W. and Tukey J.W., 1965. An algorithm for machine calculation of complex Fourier series. Math. Comp., 19, 297–301.

  8. Crossley D., Hinderer J. and Boy J.P., 2004. Regional gravity variations in Europe from superconducting gravimeters. J. Geodyn., 38, 325–342.

  9. Ducarme B., Venedikov A., Arnoso J. and Vieira R., 2004. Determination of the long period tidal waves in the GGP superconducting gravity data. J. Geodyn., 38, 307–324, DOI: 10.1016/j.jog.2004.07.004

  10. Freybourger M., Hinderer J. and Trampert J., 1997. Comparative study of superconducting gravimeters and broadband seismometers STS-1/Z in seismic and subseismic frequency bands. Phys. Earth Planet. Inter., 101, 203–217.

  11. Goodkind J.M., 1999. The superconducting gravimeter. Rev. Sci. Instrum., 70, 4131–4152.

  12. Imanishi Y., 2005. On the possible cause of long period instrumental noise (parasitic mode) of a superconducting gravimeter. J. Geodesy, 78, 683–690, DOI: 10.1007/s00190-005-0434-5.

  13. IRIS, 2012. SEED Reference Manual, Standard for the Exchange of Earthquake Data. International Federation of Digital Seismograph Networks, Incorporated Research Institutions for Seismology, United States Geological Survey (http://www.fdsn.org/seed_manual/SEEDManual_V2.4.pdf).

  14. McNamara D.E. and Buland P.B., 2004. Ambient noise levels in the continental United States. Bull. Seismol. Soc. Amer., 94. 1517–1527, DOI: 10.1785/012003001.

  15. McNamara D.E. and Boaz R.I., 2011. PQLX: A Seismic Data Quality Control System Description, Applications, and Users Manual. U.S. Geological Survey Open-File Report 2010–1292 (http://pubs.usgs.gov/of/2010/1292/pdf/OF10-1292.pdf).

  16. Peterson J., 1993. Observations And Modeling Of Seismic Background Noise. U.S. Geological Survey Open-File Report 93–332 (http://earthquake.usgs.gov/regional/asl/pubs/files/ofr93-322.pdf).

  17. Rosat S., Hinderer J. and Rivera L., 2003a. First observation of 2S1 and study of the splitting of the football mode 0S2 after the June 2001 Peru earthquake of magnitude 8.4. Geophys. Res. Lett., 30, 2111, DOI: 10.1029/2003GL018304.

  18. Rosat S., Hinderer J., Crossley D. and Rivera L., 2003b. The search for the Slichter mode: comparison of noise levels of superconducting gravimeters and investigation of a stacking method. Phys. Earth Planet. Inter., 140, 183–202, DOI: 10.1016/j.pepi.2003.07.010.

  19. Rosat S., Hinderer J., Crossley D. and Boy J.P., 2004. Performance of superconducting gravimeters from long-period seismology to tides. J. Geodyn., 38, 461–476.

  20. Rosat S. and Hinderer J., 2011. Noise levels of superconducting gravimeters: updated comparison and time stability. Bull. Seismol. Soc. Amer., 101, 1233–1241, DOI: 10.1785/0120100217.

  21. Van Camp, M., 1999. Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys. Earth Planet. Inter., 116, 81–92.

  22. Van Camp M. and Vauterin, P., 2005. Tsoft: graphical and interactive software for the analysis of time series and Earth tides. Comput. Geosci., 31, 631–640, DOI: 10.1016/j.cageo.2004.11.015.

  23. Vanícek P., 1969. Approximate spectral analysis by least-squares fit. Astrophys. Space Sci., 4, 387–391.

  24. Wessel P. and Smith W.H.F., 1995 New version of the generic mapping tools. Eos Trans. AGU, 76(33), 329–329, DOI: 10.1029/95EO00198.

  25. Widmer-Schnidrig R., 2003. What Can Superconducting Gravimeters Contribute to Normal-Mode Seismology? Bull. Seismol. Soc. Amer., 93, 1370–1380.

  26. Zábranová E., Matyska C., Hanyk L. and Pálinkáš V., 2012. Constraints on the centroid moment tensors of the 2010 Maule and 2011 Tohoku earthquakes from radial modes. Geophys. Res. Lett., 39, L18302, DOI: 10.1029/2012GL052850.

  27. Zürn W., Widmer R., Richter B. and Wenzel H.G., 1995. Comparison of free-oscillation spectra from different instruments. Marees Terrestres Bulletin D’Infornations, 122, 9173–9179.

Download references

Author information

Correspondence to Vojtech Pálinkáš.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vaľko, M., Pálinkáš, V. SGNoise - a tool for the ambient noise level analysis at superconducting gravimeter stations. Stud Geophys Geod 59, 188–199 (2015). https://doi.org/10.1007/s11200-014-0928-9

Download citation

Keywords

  • superconducting gravimeter
  • noise level
  • data quality control
  • probability density function