Studia Geophysica et Geodaetica

, Volume 59, Issue 1, pp 58–82 | Cite as

Comparison of the performances of different spring and superconducting gravimeters and STS-2 seismometer at the Gravimetric Observatory of Strasbourg, France

  • Severine Rosat
  • Marta Calvo
  • Jacques Hinderer
  • Umberto Riccardi
  • Jose Arnoso
  • Walter Zürn


Since 1973, the Gravimetric Observatory of Strasbourg (France) is located in an old fort named J9 and has been the place for various gravity experiments. We present a comparison of the noise levels of various instruments that are or were continuously recording at J9, including the LaCoste&Romberg Earth-Tide Meter ET-5 (1973–1985), the GWR Superconducting Gravimeter TT-T005 (1987–1996), the Superconducting Gravimeter C026 (since 1996), the STS-2 seismometer (since 2010) and the LaCoste&Romberg ET-11 (continuously since October 2010). Besides these instruments, the J9 Observatory has hosted temporary gravity experiments with the Micro-g LaCoste Inc. gPhone-054 (May–December 2008 and May–September 2009) and the Micro-g LaCoste Inc. Graviton-EG1194 (June–October 2011). We include also in the comparison the absolute gravimeter Micro-g FG5 #206 which is regularly performing absolute gravity measurements at J9 since 1997 and a spring gravimeter Scintrex CG5 which recorded at J9 between March 2009 and February 2010. We present the performances of these various instruments in terms of noise levels using a standardized procedure based on the computation of the residual power spectral densities over a quiet time period. The different responses to atmospheric pressure changes of all the instruments are also investigated. A final part is devoted to the instrumental self-noise of the SG C026, STS-2 and L&R ET-11 using the three channel correlation analysis method applied to 1-Hz data.


superconducting gravimeter spring gravimeter broad-band seismometer power spectral density noise level barometric admittance three-channel correlation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abours S. 1977. Exploitation des enregistrements de marée gravimétrique à Strasbourg-Aout 1973-Février 1977. Diplôme d’Ingénieur Géophysicien. University of Strasbourg, France (in French).Google Scholar
  2. Abours S. and Lecolazet R., 1977. New results about the dynamical effects of the liquid outer core as observed at Strasbourg. In: Bonatz M. and Melchior P. (Eds), Proceedings of the 8th International Symposium on Earth Tides: Bonn, 19-24 September 1977. Institute of Theoretical Geodesy, University of Bonn, Bonn, Germany, 689–697.Google Scholar
  3. Amalvict M., Hinderer J, Boy J.-P. and Gegout P., 2001. A 3 year comparison between a superconducting gravimeter (GWRC026) and an absolute gravimeter (FG5#206) in Strasbourg (France). J. Geod. Soc. Japan, 47, 334–340.Google Scholar
  4. Arnoso J., Vieira R., Velez E.J., Van Ruymbeke M. and Venedikov A.P., 2001. Studies of tides and instrumental performance of three gravimeters at Cueva de los Verdes (Lanzarote, Spain). J. Geod. Soc. Japan, 47, 70–75.Google Scholar
  5. Arnoso J., Riccardi U., Hinderer J., Cordoba B. and Montesinos F.G., 2014. Analysis of co-located measurements made with a LaCoste & Romberg Graviton-EG gravimeter and two superconducting gravimeters at Strasbourg (France) and Yebes (Spain). Acta Geod. Geophys., 49, 147–160, DOI: 10.1007/s40328-014-0043-y.CrossRefGoogle Scholar
  6. Banka D., 1997. Noise Levels of Superconducting Gravimeters at Seismic Frequencies. Ph.D. Thesis, University of Clausthal, Clausthal, Germany.Google Scholar
  7. Banka D. and Crossley D., 1999. Noise levels of superconducting gravimeters at seismic frequencies. Geophys. J. Int., 139, 87–97.CrossRefGoogle Scholar
  8. Calvo M., Rosat S., Hinderer J., Legros H., Boy J.-P. and Riccardi U., 2014. Study of the time stability of tides using a long term (1973–2011) gravity record at Strasbourg, France. In: Rizos C. and Willis P. (Eds), Earth on the Edge: Science for a Sustainable Planet. International Association of Geodesy Symposia, 139. Springer-Verlag, Berlin, Germany, 377–381.Google Scholar
  9. Crossley D., Jensen O. and Hinderer J., 1995. Effective barometric admittance and gravity residuals. Phys. Earth Planet Inter., 90, 221–241.CrossRefGoogle Scholar
  10. Crossley D., Hinderer J., Casula G., Francis O., Hsu H.T., Imanishi Y., Jentzsch G., Kääriäinen J., Merriam J., Meurers B., Neumeyer J., Richter B., Shibuya K., Sato T. and Van Dam T., 1999. Network of superconducting gravimeters benefits a number of disciplines. EOS Trans. AGU, 80(11), 121/125–126.CrossRefGoogle Scholar
  11. Crossley D., Hinderer J. and Amalvict M., 2001. A spectral comparison of absolute and superconducting gravimeter data. J. Geod. Soc. Japan, 47, 373–379.Google Scholar
  12. Crossley D., Hinderer J. and Riccardi U., 2013. The measurement of surface gravity. Rep. Prog. Phys., 76, 046101.CrossRefGoogle Scholar
  13. Ekström G., 2001. Time domain analysis of the earth’s background seismic radiation. J. Geophys. Res., 106, 26483–26494.CrossRefGoogle Scholar
  14. Freybourger M., Hinderer J. and Trampert J., 1997. Comparative study of superconducting gravimeters and broadband seismometers STS-1/Z in subseismic frequency bands. Phys. Earth Planet. Inter., 101, 203–217.CrossRefGoogle Scholar
  15. Gostoli J., 1970. Etude et construction d’un dispositif d’asservissement pour un gravimètre LaCoste- Romberg. Enregistrement numérique de la marée gravimétrique. Thèse de Dr. Ing., University of Strasbourg, Strasbourg, France (in French).Google Scholar
  16. Helffrich G.R., Wookey J.M. and Bastow I.D., 2013. The Seismic Analysis Code: A Primer and User’s Guide. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  17. Hinderer J., Amalvict M., Crossley D., Leveque J.-J., Rivera L. and Luck B., 2002. Tides, earthquakes and ground noise as seen by the absolute gravimeter FG5 and its superspring; comparison with a superconducting gravimeter and a broadband seismometer. Metrologia, 39, 495–501.CrossRefGoogle Scholar
  18. Hinderer J., Hector B., Boy J.-P., Riccardi U., Rosat S., Calvo M. and Littel F, 2014. A search for atmospheric effects on gravity at different time and space scales. J. Geodyn., 80, 50–57, DOI: 10.1016/j.jog.2014.02.001.CrossRefGoogle Scholar
  19. Imanishi Y., 2005. On the possible cause of long period instrumental noise (parasitic mode) of a superconducting gravimeter. J. Geodesy, 78, 683–690.CrossRefGoogle Scholar
  20. Imanishi Y., 2009. High-frequency parasitic modes of superconducting gravimeters. J. Geodesy, 83, 455–467.CrossRefGoogle Scholar
  21. Kurrle D. and Widmer-Schnidrig R., 2008. The horizontal hum of the Earth: A global background of spheroidal and toroidal modes. Geophys. Res. Lett., 35, DOI: 10.1029/2007GL033125.
  22. LaCoste & Romberg, 2004. Instruction Manual Model G and D Meters. LaCoste & Romberg, Austin, TX, 127 pp.Google Scholar
  23. Merriam J., 1992. Atmospheric pressure and gravity. Geophys. J. Int., 109, 488–500.CrossRefGoogle Scholar
  24. Meurers B., 2002. Aspects of gravimeter calibration by time domain comparison of gravity records. Bull. Inf. Marées Terr., 135, 10643–10650.Google Scholar
  25. Nawa K., Suda N., Fukao Y., Sato T., Aoyama Y. and Shibuya K., 1998. Incessant excitation of the Earth’s free oscillations. Earth Planets Space, 136, 3–8.CrossRefGoogle Scholar
  26. Niebauer T., 2007. Gravimetric methods- absolute gravimeter: instruments concepts and implementation. In: Herring T. (Ed.), Treatise on Geophysics, Volume 3- Geodesy. Elsevier, Amsterdam, The Netherlands, 43–64.CrossRefGoogle Scholar
  27. Nishida K., Kobayashi N. and Fukao Y., 2002. Origin of Earth’s ground noise from 2 to 20 mHz. Geophys. Res. Lett., 29, 52–1–52–4.CrossRefGoogle Scholar
  28. Peterson J., 1993. Observations and Modelling of Seismic Background Noise. Open-File Report 93-332. U.S. Department of Interior, Geological Survey, Albuquerque, NM.Google Scholar
  29. Riccardi U., Rosat S. and Hinderer J., 2011. Comparison of the Micro-g LaCoste gPhone-054 spring gravimeter and the GWR-C026 superconducting gravimeter in Strasbourg (France) using a 300-day time series. Metrologia, 48, 28–39.CrossRefGoogle Scholar
  30. Richter B., Wenzel H.-G., Zürn W. and Klopping F., 1995. From chandler wobble to free oscillations: comparison of cryogenic gravimeters and other instruments in a wide period range. Phys. Earth Planet. Inter., 91, 131–148.CrossRefGoogle Scholar
  31. Rosat S., Boy J.-P., Ferhat G., Hinderer J., Amalvict M., Gegout P. and Luck B., 2009. Analysis of a ten-year (1997–2007) record of time varying gravity in Strasbourg using absolute and superconducting gravimeters: new results on the calibration and comparison with GPS height changes and hydrology. J. Geodyn., 48, 360–365.CrossRefGoogle Scholar
  32. Rosat S. and Hinderer J., 2011. Noise levels of superconducting gravimeters: updated comparison and time stability. Bull. Seismol. Soc. Amer., 101, 1233–1241.CrossRefGoogle Scholar
  33. Rosat S., Hinderer J., Crossley D. and Boy J.P., 2004. Performance of superconducting gravimeters from long-period seismology to tides. J. Geodyn., 38, 461–476.CrossRefGoogle Scholar
  34. Savitzky A. and Golay M.J.E., 1964. Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem., 36, 1627–1639.CrossRefGoogle Scholar
  35. Shapiro N.M, Campillo M., Stehly L. and Ritzwoller M.H., 2005. High-resolution surface-wave tomography from ambient seismic noise. Science, 307, 1615–1618.CrossRefGoogle Scholar
  36. Sleeman R., van Wettum A. and Trampert J., 2006. Three-channel correlation analysis: a new technique to measure instrumental noise of digitizers and seismic sensors. Bull. Seismol. Soc. Amer., 96, 258–271.CrossRefGoogle Scholar
  37. Tanimoto T., 2008. Humming a different tune. Nature, 452, 539–541.CrossRefGoogle Scholar
  38. Van Camp M., 1999. Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys. Earth Planet. Inter., 116, 81–92.CrossRefGoogle Scholar
  39. Van Camp M., Wenzel H.-G., Schott P., Vauterin P. and Francis O., 2000. Accurate transfer function determination for superconducting gravimeters. Geophys. Res. Lett., 27, 37–40.CrossRefGoogle Scholar
  40. Van Camp M., Williams S.D.P. and Francis O., 2005. Uncertainty of absolute gravity measurements. J. Geophys. Res., 110, B05406, DOI: 10.1029/2004JB003497.CrossRefGoogle Scholar
  41. Webb S.C., 2007. The Earth’s “hum” is driven by ocean waves over the continental shelves. Nature, 445, 754–756, DOI: 10.1038/nature05536.CrossRefGoogle Scholar
  42. Widmer R. and Zürn W., 1995. On noise reduction in vertical seismic records below 2 mHz using local barometric pressure. Geophys. Res. Lett., 22, 3537–3540.CrossRefGoogle Scholar
  43. Widmer-Schnidrig R., 2003. What can superconducting gravimeters contribute to normal-mode seismology- Bull. Seismol. Soc. Amer., 93, 1370–1380.CrossRefGoogle Scholar
  44. Wielandt E. and Streckeisen G., 1982. The leaf spring seismometer: design and performance. Bull. Seismol. Soc. Amer., 72, 2349–2367.Google Scholar
  45. Wielandt E. and Widmer-Schnidrig R., 2002. Seismic sensing and seismic noise. In: Korn M. (Ed.), Ten Years of German Regional Seismic Network (GRSN). Report 25. Senate Commission for Geosciences. Wiley-VCH Verlag GmbH, Weinheim, Germany.Google Scholar
  46. Zürn W., Wenzel H.-G. and Laske G., 1991. High quality data from LaCoste-Romberg gravimeters with electrostatic feedback: A challenge for superconducting gravimeters. Bull. Inf. Marées Terr., 110, 79440–7952.Google Scholar
  47. Zürn W., Exss J., Steffen H., Kroner C., Jahr T. and Westerhaus M., 2007. On reduction of longperiod horizontal seismic noise using local barometric pressure. Geophys. J. Int., 171, 780–796.CrossRefGoogle Scholar
  48. Zürn W. and Meurers B., 2009. Clear evidence for the sign-reversal of the pressure admittance to gravity near 3mHz. J. Geodyn., 48, 371–377.CrossRefGoogle Scholar
  49. Zürn W. and Wielandt E., 2007. On the minimum of vertical seismic noise near 3 mHz. Geophys. J. Int., 168, 647–658.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2014

Authors and Affiliations

  • Severine Rosat
    • 1
  • Marta Calvo
    • 1
    • 2
  • Jacques Hinderer
    • 1
  • Umberto Riccardi
    • 3
  • Jose Arnoso
    • 4
  • Walter Zürn
    • 5
  1. 1.Institut de Physique du Globe de Strasbourg, UMR 7516Université de Strasbourg/EOST, CNRSStrasbourg CedexFrance
  2. 2.Observatorio Geofísico CentralInstituto Geográfico Nacional (IGN)MadridSpain
  3. 3.Dipartimento di Scienze della Terra, dell’Ambiente e delle Risorse (DiSTAR)Università Federico II di NapoliNaplesItaly
  4. 4.Instituto de Geociencias (CSIC, UCM)MadridSpain
  5. 5.Black Forest Observatory of Karlsruhe Institute of Technology and University of StuttgartWolfachGermany

Personalised recommendations