Studia Geophysica et Geodaetica

, Volume 59, Issue 4, pp 505–523 | Cite as

Assessment of the accuracy of local quasigeoid modelling using the GGI method: case study for the area of Poland

  • Marek TrojanowiczEmail author


We present results of analyses of the evaluation of the method for local quasigeoid modelling based on the geophysical inversion of gravity data (the GGI method). Relying on precise (with an accuracy level of ± 1 cm) GNSS/levelling height anomalies and surface gravity data, we analysed the method accuracy by a) assessing the accuracy of the model which is based on selected available global geopotential model; b) evaluating the influence of the accuracy of the input data (GNSS/levelling and gravity) on the output model accuracy; and c) analysing the influence of the global model resolution on the quasigeoid model accuracy. Analyses were performed for the area of Poland. As the basic accuracy parameter the standard deviation (σΔζ) of the differences between measured (GNSS/levelling) height anomalies and those established from the model were selected. The results indicate that the accuracy of the quasigeoid output model (in terms of σΔζ) was evaluated at cca ± 1.2 cm irrespective of the global geopotential model used. Such accuracy was also achieved using the global model coefficients only up to the degree Nmax = 90. To achieve the above-mentioned accuracy of the output model, the accuracy of input data should not be lower than cca ± 2.0 cm for GNSS/levelling height anomalies and ± 1.3 mGal for gravity data.


local quasigeoid modelling gravity inversion geodetic application of geophysical techniques disturbing potential model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blakely R.J., 1995. Potential Theory in Gravity and Magnetic Applications. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  2. Bosy J., 2014. Global, regional and national geodetic reference frames for geodesy and geodynamics. Pure Appl. Geophys., 171, 783–808, DOI: 10.1007/s00024-013-0676-8.CrossRefGoogle Scholar
  3. Förste C., Bruinsma S. L., Flechtner F., Marty J.-C., Lemoine J.-M., Eahle C., Abrikosov O., Neumayer H., Biancale R., Barthelmes F., Balmino G., 2012. A preliminary upeate of the eirect approach GOCE Processing ane a new release of EIGEN-6C. Presented at the AGU Fall Meeting, 3-7 December 2012, San Francisco, Abstract No. G31B-0923 (http://icgem.gfzpotsdam. de/ICGEM/documents/Foerste-et-al-AGU_2012.pdf).Google Scholar
  4. Godah W., Szelachowska M. and Krynski J., 2014. Accuracy assessment of GOCE-based geopotential models and their use for modelling the gravimetric quasigeoid - a case study for Poland. Geodesy and Cartography, 63, 3–24.CrossRefGoogle Scholar
  5. Grad M., Tiira T. and ESC Working Group, 2009. The Moho depth map of the European Plate. Geophys. J. Int., 176, 279-292, DOI: 10.1111/j.1365-246X.2008.03919.x.Google Scholar
  6. Królikowski C. 2006, Gravity survey at the territory of Poland - its value and importance to the Earth sciences. Bull. Pol. Geol. Inst., 420, 3–104 (in Polish with English summary).Google Scholar
  7. Krynski J. and Kloch-Glówka G., 2009. Evaluation of the performance of the new EGM08 global geopotential model over Poland. Geoinformation Issues, 1, 7–17.Google Scholar
  8. Krynski J., 2007. Precise Quasigeoid Modelling In Poland - Results And Accuracy Estimation. Monographic Sseries No 13. Institute of Geodesy and Cartography, Warsaw, Poland (in Polish).Google Scholar
  9. Lemoine F.G., Kenyon S.C., Factor J.K., Trimmer R.G., Pavlis N.K., Chinn D.S., Cox C.M., Klosko S.M., Luthcke S.B., Torrence M.H., Wang Y.M., Williamson R.G., Pavlis E.C., Rapp R.H. and Olson T.R., 1998. The Development of the Joint NASA GSFC and the National Imagery and Mapping Agency (NIMA) Geopotential Model EGM96. NASA Technical Report NASA/TP-1996/8-206861, NASA, Greenbelt, Maryland, USA.Google Scholar
  10. Li Y. and Oldenburg D.W., 1998. 3-D inversion of gravity data. Geophysics, 63, 109–119.CrossRefGoogle Scholar
  11. Łyszkowicz A. and Forsberg R., 1995. Gravimetric geoid for Poland area using spherical FFT. IAG Bulletin d’Information No 77, IGES Bulletin No 4, Special Issue, 153–161.Google Scholar
  12. Łyszkowicz A., 2000. Improvement of the quasigeoid model in Poland by GPS and levelling data. Artif. Satell. J. Planet. Geodesy, 35, 3–8.Google Scholar
  13. Łyszkowicz A., 2010. Quasigeoid for the area of Poland computed by least squares collocation. Techn. Sci., No 13, 147–163 9 Scholar
  14. Łyszkowicz A., 2012. Geoid in the area of Poland in author’s investigations. Techn. Sci., No 15, 49–64 ( Scholar
  15. Łyszkowicz A., Kuczyńska-Siehień J. and Biryło M., 2014. Preliminary unification of Kronsztadt86 local vertical datum with global vertical datum. Reports on Geodesy and Geoinformatics, 97, 103–111.Google Scholar
  16. Nagy D., 1966. The gravitational attraction of right angular prism. Geophysics, 31, 362–371.CrossRefGoogle Scholar
  17. Nagy D., Papp G. and Benedek J., 2001. The gravitational potential and its derivatives for the prism. J. Geodesy, 74, 552–560CrossRefGoogle Scholar
  18. Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: 10.1029/2011JB008916.Google Scholar
  19. Pażus R., Osada E. and Olejnik S., 2002. The levelling geoid 2001. Magazyn Geoinformacyjny Geodeta, No 5(84) (in Polish).Google Scholar
  20. Trojanowicz M., 2007. Local modelling of quasi-geoid heights on the strength of unreduced gravity and GPS/leveling data, with simultaneous estimation of topographic masses density distribution. Electron. J. Pol. Agric. Univ., 10(4) ( Scholar
  21. Trojanowicz M., 2012a. Local modelling of quasigeoid heights with the use of the gravity inverse method - case study for the area of Poland. Acta Geodyn. Geomater., 9, 5–18.Google Scholar
  22. Trojanowicz M., 2012b. Local quasigeoid modelling using gravity data inversion technique - analysis of fixed coefficients of density model weighting matrix. Acta Geodyn. Geomater., 9, 269–281.Google Scholar
  23. Trojanowicz M., 2015. Estimation of optimal quantitative parameters of selected input data used in local quasigeoid modelling by the GGI method. J. Spat. Sci., 60, 167–178, DOI: 10.1080/14498596.2014.924442.CrossRefGoogle Scholar
  24. Wyrzykowski T., 1988. Monograph on Domestic 1st Class Precise Levelling Networks. Institute of Geodesy and Cartography, Warsaw, Poland (in Polish).Google Scholar
  25. Yi W., 2012. An alternative computation of a gravity field model from GOCE. Adv. Space Res., 50, 371–384.CrossRefGoogle Scholar
  26. Yi W., Rummel R., Gruber T., 2013. Gravity field contribution analysis of GOCE gravitational gradient components. Stud. Geophys. Geod., 57, 174–202.CrossRefGoogle Scholar
  27. Zielinski J.B., Jaworski L., Zdunek R., Engelhardt G., Seeger H. and Töppe F., 1993. EUREF-POL 1992 Observation Campaign and Data Processing. Report on the Symposium of the IAG Subcommission for Europe (EUREF) Held in Budapest, Hungary, 17-19 May 1993. EUREF Publication No 2, Veröffentlichungen der Bayerischen Kommission für die Internationale Erdmessung der Bayerischen Akademie der Wissenschaften, Astronomich-Geodätische Arbeiten, München 1993, Heft Nr. 53, 92–102.Google Scholar
  28. Zieliński J.B., Łyszkowicz A., Jaworski L., Świątek A. and Zdunek R. 1998. POLREF-96 the new geodetic reference frame for Poland. In: Brunner F.K. (Ed.), Advances in Positioning and Reference Frames. International Association of Geodesy Symposia 118, Springer-Verlag, Berlin, Heidelberg, Germany.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2015

Authors and Affiliations

  1. 1.Institute of Geodesy and GeoinformaticsWroclaw University of Environmental and Life SciencesWrocławPoland

Personalised recommendations