Studia Geophysica et Geodaetica

, Volume 59, Issue 4, pp 578–593 | Cite as

Comparison of archaeomagnetic and 14C datings of ovens in a cremation necropolis of funerary urns in Belgium

  • Souad Ech-ChakrouniEmail author
  • Jozef Hus
  • Jean-Philippe Marchal


The agreement between archaeomagnetic dating and 14C dating of ovens in a vast cremation necropolis of ‘funerary urns’ discovered in the alluvial plain of the Meuse river in Belgium during a rescue excavation, demonstrates that the ovens ceased operation in the Merovingian-Carolingian period. The archaeomagnetic results of the ovens that were independently dated by the 14C technique increases the reference database for the Early Middle ages, for which archaeomagnetic data is limited in Western Europe. Dating of the ovens and the still on-going examination of the funerary urns indicate that there is probably no temporal relationship between the ovens and the necropolis. Constraints and accuracies of both dating methods for the period involved are examined.


archaeomagnetism radiometric dating Early Middle Age 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken M.J., 1990. Science-Based Dating in Archeology. Longman, New York.Google Scholar
  2. Aitken M.J., 1999. Archaeological dating using physical phenomena. Rep. Prog. Phys., 62, 1333–1376.CrossRefGoogle Scholar
  3. Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism. Fundamentals and Frontiers. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  4. Dunlop D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite. J. Geophys. Res., 107, 2056, DOI:  10.1029/2001JB000486.CrossRefGoogle Scholar
  5. Ech-chakrouni S., Hus J. and Spassov S., 2013. Constraints of archaeomagnetic dating and field intensity determinations in three ancient tile kilns in Belgium. Stud. Geophys. Geod., 57, 585–604.CrossRefGoogle Scholar
  6. Fisher R.A., 1953. Dispersion on a sphere. Proc. R. Soc. London A, 217, 295–305.CrossRefGoogle Scholar
  7. Gallet Y., Genevey A. and Le Goff M., 2002. Three millennia of directional variations of the Earth’s magnetic field in western Europe as revealed by archaeological artefacts. Phys. Earth Planet. Inter., 131, 81–89, DOI:  10.1016/S0031-9201(02)00030-4.CrossRefGoogle Scholar
  8. Gubbins D. and Herrero-Bervera E., 2007. Encyclopedia of Geomagnetism and Palaeomagnetism. Encyclopedia of Earth Sciences Series. Springer-Verlag, Dordrecht, The Netherlands, 883–886.CrossRefGoogle Scholar
  9. Hus J., Ech-chakrouni S. and Spassov S., 2014. Progress of archaeomagnetic dating in Western Europe: examples from sites in Belgium. In: Scott R.B., Braekmans D., Carremans M. and Degryse P. (Eds), Proceedings of the 39th International Symposium for Archaeometry 2012. Centre for Archaeological Sciences, KU Leuven, Leuven, Belgium, 49–56.Google Scholar
  10. Jasonov P.G., Nourgaliev D.K., Burov B.V. and Heller F., 1998. A modernized coercivity spectrometer. Geol. Carpath., 49, 224–225.Google Scholar
  11. Kirschvink J.L., 1980. The least-squares line and plane and the analysis of paleomagnetic data. Geophys. J. R. Astr. Soc., 62, 699–718.CrossRefGoogle Scholar
  12. Korhonen K., Donadini F., Riisager P. and Personen L., 2008. GEOMAGIA50: an archeointensity database with PHP and MySQL. Geochem. Geophys. Geosyst., 9, Q04029, DOI:  10.1029/2007GC001,893.CrossRefGoogle Scholar
  13. Korte M., Donadini F. and Constable C.G., 2009. Geomagnetic field for 0-3 ka: 2. A new series of time-varying global models. Geochem. Geophys. Geosyst., 10, Q06008, DOI:  10.1029/2008GC002297.CrossRefGoogle Scholar
  14. Lanos Ph., 2004. Bayesian inference of calibration curves: application to archaeomagnetism. In: Buck C. and Millard A. (Eds.), Tools for Constructing Chronologies: Crossing Disciplinary Boundaries. Lecture Notes in Statistics., 177, 43–82,, Springer-Verlag, London, U.K.CrossRefGoogle Scholar
  15. Lanos Ph., Le Goff M., Kovacheva M. and Schnepp E., 2005. Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophys. J. Int., 160, 440–476.CrossRefGoogle Scholar
  16. Le Goff M., Gallet Y., Genevey A. and Warmé N., 2002. On archaeomagnetic secular variation curves and archaeomagnetic dating. Phys. Earth Planet. Inter., 134, 203–211.CrossRefGoogle Scholar
  17. Marchal J-Ph., Colette O., Goffioul C., Neuray B., Pirson S., Spagna P., Toussaint M., Van der Sloot P. and Verstraelen N., 2012. Fouille de prévention d’un champ d’urnes à Hermalle-sous-Argenteau (Oupeye, province de Liège): note préliminaire. Lunula, Archeologia Protohistorica, 20, 65–69 (in French).Google Scholar
  18. Marchal J.-Ph., Colette O., Goffioul C., Neuray B., Pirson S., Spagna P., Toussaint M., Van der Sloot P. and Verstraelen N., 2013. Oupeye/Hermalle-sous-Argenteau: fouille de prévention d’un champ d’urnes. Chronique de l’Archéologie wallonne, 20, 145–147 (in French).Google Scholar
  19. Marchal J.-Ph., Godefroid A., Goffioul C., Neuray B., Toussaint M., Van der Sloot P., Verstraelen N. and Yernaux G., 2014. Oupeye/Hermalle-sous-Argenteau: le champ d’urnes du Bronze final, dernière campagne de prévention et fouille en laboratoire. Chronique de l’Archéologie wallonne, 21, 153–155 (in French).Google Scholar
  20. Nöel M. and Batt C., 1990. A method for correcting geographically separated remanence directions for the purpose of archaeomagnetic dating. Geophys. J. Int., 102, 753–756.CrossRefGoogle Scholar
  21. Pavón-Carrasco F.J., Osete M.L., Torta J.M. and Gaya-Piqué L.R., 2009. A regional archeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: applications to archeomagnetic dating. Geochem. Geophys. Geosyst., 10, Q03013, DOI:  10.1029/2008GC002244 CrossRefGoogle Scholar
  22. Pavón-Carrasco F.J., Gómez-Paccard M., Hervé G., Osete M.L. and Chauvin A., 2014. Intensity of the geomagnetic field in Europe for the last 3 ka: Influence of data quality on geomagnetic field modeling. Geochem. Geophys. Geosyst., 15, 2515–2530, DOI:  10.1002/2014GC005311 CrossRefGoogle Scholar
  23. Ramsey C.B., 2001. Development of the Radiocarbon Program OxCAL. Radiocarbon, 43, 355–366.Google Scholar
  24. Reimer P.J., Baillie M.G.L., Bard E., Bayliss A., Beck J.W., Bertrand C.J.H., Blackwell P.G., Buck C.E., Burr G.S., Cutler K.B., Damon P.E., Edwards R.L., Fairbanks R.G., Friedrich M., Guilderson T.P., Hogg A.G., Hughen K.A., Kromer B., McCormac F.G., Manning S.W., Ramsey Ch.B., Reimer R.W., Remmele S., Southon J.R., Stuiver M., Talamo S., Taylor F.W., van der Plicht J. and Weyhenmeyer C.E., 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon, 46, 1029–1058.Google Scholar
  25. Schnepp E., Obenaus M. and Lanos Ph., 2015. Posterior archaeomagnetic dating: An example from the Early Medieval site Thunau am Kamp, Austria. J. Archaeol. Sci. Reports, DOI:  10.1016/ji.jasrep.2014.12.002 (in press).Google Scholar
  26. Stuiver M., Reimer P.J., Bard E., Beck J.W., Burr G.S., Hughen K.A., Kromer B., Mc-Cormac F.G., van der Plicht J. and Spurk M., 1998. IntCal98 radiocarbon age calibration, 24000-0 cal BP. Radiocarbon, 40, 1041–1083.Google Scholar
  27. Van der Sloot P., Court-Picon M., Goffette Q. and Spagna P., 2013. Oupeye/Hermalle-sous-Argenteau: évaluation archéologique et étude géologique du lieu-dit “Au Buisson”. Chronique de l’Archéologie wallonne, 20, 200–204 (in French).Google Scholar
  28. Wilson M.A., Carter M.A., Hall C., Ince W.D., McKay B. and Betts I.M., 2009. Dating fired-clay ceramics using long-term power law rehydroxylation kinetics. Proc. R. Soc. A-Math. Phys. Eng. Sci., 465, 2407–2415.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2015

Authors and Affiliations

  • Souad Ech-Chakrouni
    • 1
    Email author
  • Jozef Hus
    • 1
  • Jean-Philippe Marchal
    • 2
  1. 1.Centre de Physique du Globe de l’IRMDourbesBelgium
  2. 2.DGO-4 Liège 1LiègeBelgium

Personalised recommendations