Advertisement

Studia Geophysica et Geodaetica

, Volume 59, Issue 3, pp 394–408 | Cite as

Field tests of L1 phase centre variation models of surveying-grade GPS antennas

  • Katarzyna Stępniak
  • Paweł Wielgosz
  • Radosław Baryła
Article

Abstract

GNSS antenna electrical phase center variability is a source of errors in precise geodetic measurements, particularly in reference frame maintenance, satellite precise levelling, deformation monitoring, the establishment of geodetic control networks, geodynamic research, etc. It has a considerable influence on the precision and accuracy of the resulting coordinates. Previous research shows that changing the antenna on the monitored point often results in a considerable bias in the derived height coordinate component. In theory, if electrical phase center is sufficiently modeled, antenna changes should have negligible effect on coordinates. We present the analysis of the influence of the GPS antenna models on the resulting marker position. Numerical tests are based on field measurements. The GPS data collected at the test baseline were processed using Bernese GPS Software Version 5.0. The research shows that the IGS and NGS phase center variation models for some types of the surveying (rover) antennas are still imperfect and are contaminated by constant errors, which may exceed even ± 5 mm for horizontal coordinates components and ± 25 mm for vertical ones.

Keywords

satellite geodesy phase center variation GPS antenna 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bogusz J., Kłos A., Grzempowski P. and Kontny B., 2013. Modelling velocity field in regular grid on the area of Poland on the basis of the velocities of European permanent stations. Pure Appl. Geophys., 171, 808–833.Google Scholar
  2. Dach R., Hugentobler U., Fridez P. and Meindl M., 2007. Bernese GPS Software Version 5.0. Stämpfli Publications AG, Bern, Switzerland.Google Scholar
  3. Dilssner F., Seeber G., Wübbena G. and Schmitz M., 2008. Impact of near-field effects on the GNSS position solution. In: Proceedings of the 21st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2008). The Institute of Navigation, Manassas, VA, 612–624.Google Scholar
  4. Dow J.M., Neilan R.E. and Rizos C., 2009. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy, 83, 191–198.CrossRefGoogle Scholar
  5. Elósegui P., Davis J.L., Jaldehag R.T.K., Johansson J.M., Niell A.E. and Shapiro I.I., 1995. Geodesy using the global positioning system: the effects of signal scattering on estimates of site position. J. Geophys. Res., 100(B6), 9921–9934.CrossRefGoogle Scholar
  6. Görres B., Campbell J., Siemes M. and Becker M., 2004. New anechoic chamber results and comparison with field and robot techniques. Presented at IGS Workshop, Bern, Switzerland, 1–5 March 2004 (http://igscb.jpl.nasa.gov/igscb/resource/pubs/04_rtberne/cdrom/Session10/10_1_Goerres.pdf).Google Scholar
  7. Görres B., Campbell J., Becker M. and Siemes M., 2006. Absolute calibration of GPS antennas: laboratory results and comparison with field and robot techniques. GPS Solut., 10, 136–145.CrossRefGoogle Scholar
  8. Hatanaka Y., Sawada M., Horita A., Kusaka M., Johnson J.M. and Rocken C., 2001. Calibration of antenna-radome and monument-multipath effect of GEONET-Part 2: Evaluation of the phase map by GEONET data. Earth Planets Space, 53, 23–30.CrossRefGoogle Scholar
  9. Mader G., 1999. GPS Antenna calibration at the National Geodetic Survey. GPS Solut., 3(1), 50–58.CrossRefGoogle Scholar
  10. Mader G., 2001. A comparison of Absolute and Relative GPS Antenna Calibrations. GPS Solut., 4, 37–40.CrossRefGoogle Scholar
  11. Rothacher M. and Mader G., 2002. Receiver and satellite antenna phase center offsets and variations. In: Tetreault P., Neilan R. and Gowey K. (Eds), Towards Real-Time Network, Data and Analysis. International GNSS Service, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, 141–152 (http://igscb.jpl.nasa.gov/igscb/resource/pubs/02_ott/front_matter.pdf).Google Scholar
  12. Schenk V., Schenková Z., Bosy J. and Kontny B., 2010. Reliability of GPS data for geodynamic studies case study: Sudeten area, The Bohemian Massif. Acta Geodyn. Geomater., 7, 113–128.Google Scholar
  13. Schmid R., Mader G. and Herring T., 2004. From relative to absolute antenna phase center corrections. In: Meindl M. (Ed.), Celebrating a Decade of the Interntional GPS Service. Astronomical Institute, University of Berne, Berne, Switzerland (http://igscb.jpl.nasa.gov/igscb/resource/pubs/04_rtberne/cdrom/Session10/10_0_Mader.pdf).Google Scholar
  14. Schmid R., Rothacher M., Thaller D. and Steigenberger P., 2005. Absolute phase center corrections of satellite and receiver antennas. GPS Solut., 9, 283–293.CrossRefGoogle Scholar
  15. Schmitz M., Wübbena G. and Boettcher G., 2002. Tests of phase center variations of various GPS antennas and some results, GPS Solut., 6 18–27.CrossRefGoogle Scholar
  16. Steigenberger P., Rothacher M., Schmid R., Rülke A., Fritsche M., Dietrich R. and Tesmer V., 2009. Effects of different antenna phase center models on GPS-derived reference frames. In: Drewes H. (Ed.), Geodetic Reference Frames. International Association of Geodesy Symposia, 134, Springer-Verlag, Heidelberg, Germany, 83–88.CrossRefGoogle Scholar
  17. Stepniak K., Baryla R., Wielgosz P. and Kurpinski G., 2013. Optimal data processing strategy in precise GPS leveling networks. atActa Geodyn. Geomater., 10, 443–452.CrossRefGoogle Scholar
  18. Wielgosz P., Paziewski J. and Baryla R., 2011. On constraining zenith tropospheric delays in processing of local GPS networks with Bernese Software. Surv. Rev., 43, 472–483.CrossRefGoogle Scholar
  19. Wübbena G., Schmitz M., Boettcher G. and Schumann C., 2006a. Absolute GNSS antenna calibration with a robot: repeatability of phase variations, calibration of GLONASS and determination of carrier-to-noise pattern. (http://www.geopp.de/media/docs/pdf/gppigs06_pabs_g.pdf).Google Scholar
  20. Wübbena G., Schmitz M., Boettcher G., 2006b. Near-field effects on GNSS sites: analysis using absolute robot calibrations and procedures to determine corrections. In: Springer T., Gendt G. and Dow J.M. (Eds),The International GNSSService (IGS): “Perspectives and Visions for 2010 and beyond” (ftp://igs.org/pub/resource/pubs/06_darmstadt/IGS WS 202006Papers PDF/10_Wubbena_gppigs06_pnf_i.pdf).Google Scholar
  21. Zeimetz P. and Kuhlmann H., 2011. Validation of the laboratory calibration of geodetic antennas based on GPS measurements. International Federation of Surveyors, Article of the Month- February 2011 (https://www.fig.net/pub/monthly_articles/february_2011/february_201_zeimetz_kuhlmann.pdf).Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2015

Authors and Affiliations

  • Katarzyna Stępniak
    • 1
  • Paweł Wielgosz
    • 1
  • Radosław Baryła
    • 1
  1. 1.University of Warmia and Mazury in OlsztynOlsztynPoland

Personalised recommendations