Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

The reduction of hydrology-induced gravity variations at sites with insufficient hydrological instrumentation


The hydrology-induced gravity variation is a limiting factor in the study of geophysical phenomena with superconducting gravimeters. The goal of this paper is to analyse and reduce the hydrological effects on gravity at the Vienna (Austria) station that is a typical example of a site insufficiently equipped with hydro-meteorological sensors. The hydrological effects are studied in a local as well as a global scale. A new method for computing the local soil moisture effect is presented. This approach overcomes the lack of in situ soil moisture observations and utilizes gravity residuals in the calibration process of a local conceptual 1D soil moisture model. In addition, only a priori soil moisture variations, provided by a global hydrological model, in situ temperature, precipitation and snow height time series are required in this approach. The coupling of the calibration process to gravity residuals increases the sensitivity of the modelled soil moisture to corrections that are applied within the processing of the gravity observations. This is shown in this study using different global hydrological corrections. The differences between these corrections are reflected in the modelled soil moisture so that the total hydrological effect (local plus global) is almost identical. The total hydrological effects reduce the observed gravity variation by 30%. Moreover, both seasonal as well as shortterm variations clearly related to observed hydro-meteorological parameters are minimized. On the other hand, the sensitivity of the modelled soil moisture to gravity corrections implies that the long-term gravity residuals are not suitable for local hydrological studies unless the significant differences between the global hydrological corrections are resolved.

This is a preview of subscription content, log in to check access.


  1. Banka D. and Crossley D., 1999. Noise levels of superconducting gravimeters at seismic frequencies. Geophys. J. Int., 139, 87–97.

  2. Boy J.-P. and Hinderer J., 2006. Study of the seasonal gravity signal in superconducting gravimeter data. J. Geodyn., 41, 227–233.

  3. Brocca L., Melone F. and Moramarco T., 2008. On the estimation of antecedent wetness conditions in rainfall–runoff modelling. Hydrol. Process., 22, 629–642.

  4. Courtier N., Ducarme B., Goodkind J., Hinderer J., Imanishi Y., Seama N., Sun H., Merriam J., Bengert B. and Smylie D.E., 2000. Global superconducting gravimeter observations and the search for the translational modes of the inner core. Phys. Earth Planet Inter., 117, 3–20.

  5. Creutzfeldt B., Güntner A., Wziontek H. and Merz B., 2010a. Reducing local hydrology from highprecision gravity measurements: a lysimeter-based approach. Geophys. J. Int., 183, 178–187.

  6. Creutzfeldt B., Güntner A., Vorogushyn S. and Merz B., 2010b. The benefits of gravimeter observations for modelling water storage changes at the field scale. Hydrol. Earth Syst. Sci., 14, 1715–1730.

  7. Creutzfeldt B., Ferré T., Troch P., Merz B., Wziontek H. and Güntner A., 2012. Total water storage dynamics in response to climate variability and extremes: Inference from long-term terrestrial gravity measurement. J. Geophys. Res.-Atmos., 117, D08112.

  8. Dee D.P., Uppala S.M., Simmons A.J., Berrisford P., Poli P., Kobayashi S., Andrae U., Balmaseda M.A., Balsamo G., Bauer P., Bechtold P., Beljaars A.C.M., van de Berg L., Bidlot J., Bormann N., Delsol C., Dragani R., Fuentes M., Geer A.J., Haimberger L., Healy S.B., Hersbach H., Hólm E.V., Isaksen L., Kållberg P., Köhler M., Matricardi M., McNally A.P., Monge-Sanz B.M., Morcrette J.J., Park B.K., Peubey C., de Rosnay P., Tavolat C., Thépaut J.N. and Vitart F., 2011. The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J. Roy. Meteor. Soc., 137, 553–597.

  9. Döll P., Kaspar F. and Lehner B., 2003. A global hydrological model for deriving water availability indicators: model tuning and validation. J. Hydrol., 270, 105–134.

  10. Ducarme B., Sun H.-P. and Xu J.-Q., 2007. Determination of the free core nutation period from tidal gravity observations of the GGP superconducting gravimeter network. J. Geodesy, 81, 179–187.

  11. Farrell W.E., 1972. Deformation of the Earth by surface loads. Rev. Geophys., 10, 761–797.

  12. Fukumori I., 2002. A Partitioned Kalman Filter and Smoother. Mon. Weather Rev., 130, 1370–1383.

  13. Hasan S., Troch P.A., Boll J. and Kroner C., 2006. Modeling the hydrological effect on local gravity at Moxa, Germany. J. Hydrometeorol., 7, 346–354.

  14. Heck B. and Seitz K., 2007. A comparison of the tesseroid, prism and point-mass approaches for mass reductions in gravity field modelling. J. Geodesy, 81, 121–136.

  15. Hinderer J., Crossley D. and Warburton R.J., 2007. Gravimetric methods — superconducting gravity meters. In: Schubert G. (Ed.), Treatise on Geophysics, 3. Elsevier, Amsterdam, 65–122.

  16. Hinderer J., Pfeffer J., Boucher M., Nahmani S., Linage C., Boy J.P., Genthon P., Seguis L., Favreau G., Bock O. and Descloitres M., 2012. Land water storage changes from ground and space geodesy: first results from the GHYRAF (Gravity and Hydrology in Africa) experiment. Pure Appl. Geophys., 169, 1391–1410.

  17. Johnson A.I., 1967. Specific Yield-Compilation of Specific Yields for Various Materials. Water Supply Paper 1662-D. United States Government Printing Office, Washington D.C.

  18. Jonas T., Marty C. and Magnusson J., 2009. Estimating the snow water equivalent from snow depth measurements in the Swiss Alps. J. Hydrol., 378, 161–167.

  19. Kim S.-B., Lee T. and Fukumori I., 2007. Mechanisms controlling the interannual variation of mixed layer temperature averaged over the Niño-3 region. J. Climate, 20, 3822–3843.

  20. Klügel T. and Wziontek H., 2009. Correcting gravimeters and tiltmeters for atmospheric mass attraction using operational weather models. J. Geodyn., 48, 204–210.

  21. Longuevergne L., Boy J.P., Florsch N., Viville D., Ferhat G., Ulrich P., Luck B. and Hinderer J., 2009. Local and global hydrological contributions to gravity variations observed in Strasbourg. J. Geodyn., 48, 189–194.

  22. Lundberg A., Richardson-Näslund C. and Andersson C., 2006. Snow density variations: consequences for ground-penetrating radar. Hydrol. Process., 20, 1483–1495.

  23. Marchand W., 2003. Applications and Improvement of a Georadarsystem to Assess Areal Snow Distribution for Advances in Hydrological Modelling. Ph.D. Thesis, Norwegian University of Science and Technology, Trondheim, Norway.

  24. Merriam J.B., 1992. Atmospheric pressure and gravity. Geophys. J. Int., 109, 488–500.

  25. Meurers B., 2006. Long and short term hydrological effects on gravity in Vienna. Bulletin d’Information des Marées Terrestres, 142, 11343–11351.

  26. Moore I.D., Grayson R.B. and Ladson A.R., 1991. Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrol. Process., 5, 3–30.

  27. Mörikofer W., 1948. The dependence on altitude of the snow cover in the Alps. In: Proceedings Union Géodésique et Géophysique, Oslo, 161–170.

  28. Naujoks M., Kroner C., Weise A., Jahr T., Krause P. and Eisner S., 2010. Evaluating local hydrological modelling by temporal gravity observations and a gravimetric three-dimensional model. Geophys. J. Int., 182, 233–249.

  29. Pagiatakis S.D., 1988. Ocean Tide Loading on a Self-Gravitating, Compressible, Layered, Anisotropic, Viscoelastic and Rotating Earth with Solid Inner Core and Fluid Outer Core. Technical Report 139. University of New Brunswick, Fredericton, Canada.

  30. Rodell M., Houser P.R., Jambor U., Gottschalck J., Mitchell K., Meng C.J., Arsenault K., Cosgrove B., Radakovich J., Bosilovich M., Entin J.K., Walker J.P., Lohmann D. and Toll D., 2004. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc., 85, 381–394.

  31. Steffen H. and Wu P., 2011. Glacial isostatic adjustment in Fennoscandia- A review of data and modeling. J. Geodyn., 52, 169–204.

  32. Todd D.K. and Mays L.W., 2005. Groundwater Hydrology. 3rd Edition. John Wiley and Sons, Inc. Hoboken, NJ.

  33. Van Camp M., 1999. Measuring seismic normal modes with the GWR C021 superconducting gravimeter. Phys. Earth Planet Inter., 116, 81–92.

  34. Van Camp M., de Viron O., Scherneck H.-G., Hinzen K.-G., Williams S.D.P., Lecocq T., Quinif Y. and Camelbeeck T., 2011. Repeated absolute gravity measurements for monitoring slow intraplate vertical deformation in western Europe. J. Geophys. Res.-Sol. Earth, 116, B08402.

  35. Virtanen H., Tervo M. and Bilker-Koivula M., 2006. Comparison of superconducting gravimeter observations with hydrological models of various spatial extents. Bulletin d’Information des Marées Terrestres, 142, 11361–11368.

Download references

Author information

Correspondence to Michal Mikolaj.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mikolaj, M., Meurers, B. & Mojzeš, M. The reduction of hydrology-induced gravity variations at sites with insufficient hydrological instrumentation. Stud Geophys Geod 59, 424–437 (2015). https://doi.org/10.1007/s11200-014-0232-8

Download citation


  • superconducting gravimeter
  • hydrological modelling
  • soil moisture
  • global hydrological effects