Skip to main content
Log in

Evolution of paleostress fields and brittle deformation in Hronov-Poříčí Fault Zone, Bohemian Massif

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

This paper investigates the tectonic history and describes the paleostress evolution of the Hronov-Poříčí Fault Zone in the northeastern part of the Bohemian Massif. A detailed structural research has been carried out in 50 localities. Faults and fractures have been investigated and measured. An analysis of the fault-slip data within the studied area resulted in the identification of four tectonic phases. The maximum principal stress was observed to be acting NE-SW during the first and youngest phase. The trend of the horizontal compression runs at 223° in the horizontal plane perpendicular to the reverse faults occurring in this phase, as well as to the studied fault zone. The minimum principal stress was found to be subvertical dipping at 87° and trending at 358°. Both the brittle tectonic investigations and paleostress analysis have documented that, at present, the Hronov-Poříčí Fault Zone is under compressive regime with dextral component.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angelier A. and Mechler P., 1977. Sur une méthode graphique de recherche de constraintes principales également utilisable et en séismologie: la méthode des dièdres droits. Bull. Soc. Géol. France, 19, 1309–1318 (in French).

    Google Scholar 

  • Angelier J., 1989. From orientations to magnitudes in paleostress determinations using fault slip data. J. Struct. Geol., 11, 37–50.

    Article  Google Scholar 

  • Angelier J., Bergerat F., Chu H.T., Juang W.S. and Lu CH.Y., 1990. Paleostress analysis as a key to margin extension: The Penghu Islands, South China Sea. Tectonophysics, 183, 161–176.

    Article  Google Scholar 

  • Angelier J., 1994. Fault slip analysis and paleostress reconstruction. In: Hancock P.L. (Ed.), Continental Deformation. Pergamon, Oxford, 101–120.

    Google Scholar 

  • Barrier E., 1992. Tectonic analysis of a flexed foreland: the Ragusa Platform. Tectonophysics, 206, 91–111.

    Article  Google Scholar 

  • Bott M.H.P., 1959. The mechanisms of oblique slip faulting. Geol. Mag., 96, 109–117.

    Article  Google Scholar 

  • Brož M., Málek J., Stejskal V., Štěpančíková P., Štrunc J. and Kolínský P., 2009. Hydro-geological effects of seismicity in th e Hronov-Poříčí Fault Zone area. Acta Res. Rep., 18, 61–63.

    Google Scholar 

  • Cajthamlová M., 2009. Geokinematika Českého masívu určená z dat satelitní geodézie (Geokinematics of the Bohemian Massif Determined by the Satellite Geodesy Data). Ph.D. Thesis, Czech Technical University, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Chlupáč I., Brzobohatý R., Kovanda J. and Stráník Z., 2002. Geologická minulost České republiky (Geological History of the Czech Republic). Academia, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Doblas M., 1998. Slickenside kinematic indicators. Tectonophysics, 295, 187–197.

    Article  Google Scholar 

  • Dunne W.M. and Hancock P.L., 1994. Palaeostress analysis of small-scale brittle structures, in Continental deformation. In: Hancock P.L. (Ed.), Continental Deformation. Pergamon, Oxford, 101–120.

    Google Scholar 

  • Dyksterhuis S., Miller R.D. and Albert R.A., 2005. Paleostress field evolution of the Australian continent since the Eocene. J. Geophys. Res., 110, B05102, DOI: 10.1029/2003JB002728.

    Google Scholar 

  • Fischer T. and Horálek J., 2003. Space-time distribution of earthquake swarms in the principal focal zone of the NW Bohemia/Vogtland seismoactive region: period 1985–2001. J. Geodyn., 35, 125–144.

    Article  Google Scholar 

  • Gent H.W., Back S., Urai J.L., Kukla P.A. and Reichrter K., 2009. Paleostresses of the Groningen area, the Netherlands — Results of a seismic based structural reconstruction. Tectonophysics, 470, 147–161.

    Article  Google Scholar 

  • Havíř J., Pazdírková J., Sýkorová Z. and Špaček P., 2006. Exhibitions of the seismo-tectonic activity in the NE partof the Bohemian Massif in the period 2004–2005. Geol. Res. Moravia Silesia (Geol. vyzk. Mor. Slez. v r. 2005), 13, 120–121 (in Czech, with English Abstract).

    Google Scholar 

  • Heeremans M., Larsen B.J. and Stel H., 1996. Paleostress reconstruction from kinematic indicators in the Oslo Graben, southern Norway: new constraints on the mode of rifting. Tectonophysics, 266, 55–79.

    Article  Google Scholar 

  • Heinicke J., Fischer T., Gaupp R., Götze Koch, U., Konietzky H. and Stanek K.P., 2009. Hydrotermal alteration as a trigger mechanism for earthquake swarms: the Vogtland/NW Bohemia region as a case study. Geophys. J. Int., 178, 1–13.

    Article  Google Scholar 

  • Kolínský P., Valenta J. and Gaždová R., 2012. Seismicity, groundwater level variations and earth tides in the Hronov-Poříčí Fault Zone, Czech Republic. Acta Geodyn. Geomater., 9(2), 191–209.

    Google Scholar 

  • Kryza R. and Pin Ch., 2010. The Central-Sudetic ophiolites (SW Poland): Petrogenetic issues, geochronology and palaeotectonic implications. Gondwana Res., 17, 292–305.

    Article  Google Scholar 

  • Kozdrój W. and Cymerman Z., 2003. Alpine tectonic inversion — principal mechanism of the Variscan Basement uplift and exhumation in the Sudety Mts. Geolines, 16, 59–60.

    Google Scholar 

  • Málek J., Brož M., Stejskal V. and Štrunc J., 2008. Local seismicity at the Hronov-Poříčí Fault (Eastern Bohemia). Acta Geodyn. Geomater., 5(2), 171–175.

    Google Scholar 

  • McCann T., 2008. The Geology of Central Europe. Volume 1: Precambrian and Palaeozoic. The Geological Society. London, U.K.

    Google Scholar 

  • Nováková L., Hájek P. and Štastný M., 2010. Determining the relative age of fault activity through analyses of gouge mineralogy and geochemistry: a case study from Vápenná (Rychleby Mts), Czech Republic. Int. J. Geosci., 1, 66–69.

    Article  Google Scholar 

  • Parfeevets A.V. and Sankov V.A., 2012. Late Cenozoic tectonic stress fields of the Mongolian microplate. C. R. Geosci., 344, 227–238.

    Article  Google Scholar 

  • Paroditis M., Shapiro S.A. and Rothert E., 2005. Evidence for triggering of the Vogtland swarms 2000 by pore pressure diffusion. J. Geophys. Res., 110, B05S10, DOI: 10.1029/2004JB003267.

    Google Scholar 

  • Pešek J., Holub V., Jaroš J., Malý L., Martínek K., Prouza V., Spudil J. and Tásler R., 2001. Geology and Deposits of the Upper Palaeozoic Limnic Basins of the Czech Republic. Czech Geological Institute, Prague, Czech Republic (in Czech).

    Google Scholar 

  • Rocher M., Lacombe O. and Angelier A., 1998. Pyrenean tectogenesis in the Aquitaine Flexural Basin: insights from paleostress reconstruction. C. R. Geosci., 226, 129–135.

    Google Scholar 

  • Schenk V., Schenková Z., Grácová M. and Kottnauer P., 2006. Preliminary site movements in the GPS West Sudeten network. Acta Geodyn. Geomater., 3(3), 45–51.

    Google Scholar 

  • Schenk V., Schenková Z., Cajthamlová M. and Fučík Z., 2010. GEONAS — geodynamic network of permanent GNSS stations within the Czech Republic. Acta Geodyn. Geomater., 7(1), 99–111.

    Google Scholar 

  • Schenková Z., Kottnauer P., Schenk V., Cajthamlová-Grácová M., Mantlík F. and Kujal R., 2009. Investigation of the recent crustal movements of the eastern part of the Bohemian Massif using GPS technology. Acta Res. Rep., 18, 17–25.

    Google Scholar 

  • Stejskal V., Štěpančíková P. and Vilímek V., 2006. Selected geomorphological methods assessing neotectonic evolution of the seismoactive Hronov-Poříčí Fault Zone. Geomorph. Slovaca, 6, 14–22.

    Google Scholar 

  • Stejskal V., Skalský L. and Kašpárek L., 2007. Results of two years’ seismo-hydrological monitoring in the area of the Hronov-Poříčí Fault Zone, Western Sudetes. Acta Geodyn. Geomater., 4(4), 59–76.

    Google Scholar 

  • Stejskal V., Kašpárek L., Kopylova G.N., Lyubyshin A.A. and Skalský L., 2009. Precursory groundwater level changes in the period of activation of the weak intraplate seismic aktivity on the NE margin of the Bohemian Maffif (Central Europe) in 2005. Stud. Geophys. Geod., 53, 215–238.

    Article  Google Scholar 

  • Špaček P., Sýkorová Z., Pazdírková J., Švancara J. and Havíř J., 2006. Present-day seismicity of the south-eastern Elbe Fault System (NE Bohemian Massif). Stud. Geophys. Geod., 50, 233–258.

    Article  Google Scholar 

  • Tásler R., 1964. Permian-Carboniferous and Lower Triassic of the Intrasudetic Depression. In: Svoboda J. (Ed.), Regionální geologie ČSSR (Regional Geology of Czechoslovakia). Academia (CSAV Publishing), Prague, Czech Republic 204–232 (in Czech).

    Google Scholar 

  • Tásler R., Čadková Z., Dvořák J., Fediuk F., Chaloupský J., Jetel J., Kaiserová-Kalibová M., Prouza V., Schovánková-Hrdličková D., Středa J., Střída M. and Šetlík J., 1979. Geologie české části vnitrosudetské pánve (Geology of the Czech part of the Intrasudetic Basin). Ústřední ústav geologický (Czech Geological Survey), Prague, Czech Republic (in Czech, with English summary).

    Google Scholar 

  • Uličný D., Martínek K. and Grygar R. 2002. Syndepositional geometry and post-depositional deformation of the Krkonoše Piedmont Basin: a preliminary model. Geolines, 14, 101–102.

    Google Scholar 

  • Valenta J., Stejskal V. and Štěpančíková P., 2008. Tectonic pattern of the Hronov-Poříčí Trough as seen from pole-dipole geoelectrical measurements. Acta Geodyn. Geomater., 5(2), 185–195.

    Google Scholar 

  • Woldřich J.N., 1901. Zemětřesení v severovýchodních Čechách ze dne 10. ledna 1901 (Earthquake in the north-eastern Bohemia on January 10, 1901). Rozpravy České akademie císaře Františka Josefa pro vědy, slovesnost a umění (Trans. Acad. Sci.), Ser. II, Vol.10, No.25, 1–33 (in Czech).

    Google Scholar 

  • Wojewoda J., 2007. Neotectonic aspect of the Intrasudetic shear zone. Acta Geodyn. Geomater., 4(4), 31–41.

    Google Scholar 

  • Wojewoda, J. 2009. Ždarky-Pstražna Dome: A strike slip fault — related structure at the eastern termination of the Poříčí-Hronov Fault Zone (Sudetes). Acta Geodyn. Geomater., 6, No.3 (155), 273–290.

    Google Scholar 

  • Zaineldeen U.F., 2011. Paleostress reconstructions of Jabal Hafit structures, Southeast of Al Ain City, United Arab Emirates (UAE). J. Afr. Earth. Sci., 59, 323–335.

    Article  Google Scholar 

  • Zedník J. and Hudová Z., 2005. Zemětřesení o velikosti 3.3 na Hronovsku dne 25. října 2005 (Magnitude 3.3 Hronov earthquake on October 25, 2005). In: Marková E. (Ed.), Člověk ve svém pozemském a kosmickém prostředí (Man in His Earth and Cosmic Environment). Observatory Úpice, Úpice, Czech Republic, ISBN: 80-86303-10-1, 129–133 (in Czech).

    Google Scholar 

  • Žalohar J. and Vrabec M., 2007. Paleostress analysis of heterogeneous fault-slip data: The Gauss method. J. Struct. Geol., 29, 1798–1810.

    Article  Google Scholar 

  • Žalohar J., 2009. T-TECTO 3.0 Professional Integrated Software for Structural Analysis of Fault-Slip Data. Introductory Tutorial. Faculty of Natural Sciences and Engineering, Department of Geology, Ljubljana, Slovenia.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucie Nováková.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nováková, L. Evolution of paleostress fields and brittle deformation in Hronov-Poříčí Fault Zone, Bohemian Massif. Stud Geophys Geod 58, 269–288 (2014). https://doi.org/10.1007/s11200-013-1167-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-013-1167-1

Keywords

Navigation