Studia Geophysica et Geodaetica

, Volume 58, Issue 2, pp 302–325 | Cite as

Semiannual and annual oscillations of sea level and their impact on asymmetry between El Niño and La Niña episodes

  • Małgorzata Świerczyńska
  • Tomasz Niedzielski
  • Wiesław Kosek
Article

Abstract

The purpose of this paper is twofold. First, we demonstrate that the asymmetry between El Niño and La Niña events recorded in sea level variation occurs only during extreme episodes of El Niño/Southern Oscillation. Second, we explain that the asymmetry is controlled by certain regular cycles which have time-variable amplitudes. Gridded maps of sea level anomaly that form a spatial-temporal time series (spatial resolution: 1° × 1°, sampling interval: 1 week) spanning the time interval from 14/10/1993 to 18/04/2012 were used. We examined those time series and found that certain regular harmonic signals (periods: 365, 182, 120, 90 and 62 days) are dominant terms of their temporal variability. By subtracting those oscillations from sea level anomaly data, residuals were determined. Using skewness and kurtosis as measures of asymmetry and nonlinearity — after adopting 10-year moving window — we found that the extreme El Niño 1997/1998 has been a dominant driving force of the asymmetry and nonlinearity of El Niño/Southern Oscillation since the end of 1993. In order to detect residual signals that are responsible for the asymmetry, we applied the Fourier Transform Band Pass Filter and found that there are two important oscillations remaining in the residual sea level anomaly data, i.e. the annual and semiannual ones with time-varying amplitudes. We hypothesize that temporarily uneven amplitudes have meaningful impact on the aforementioned asymmetry.

Keywords

El Niño/Southern Oscillation El Niño 1997/1998 sea level anomaly asymmetry nonlinearity annual cycle semiannual cycle 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An S.-I. and Wang B., 2001. Mechanisms of locking the El Niño and La Niña mature phases to boreal winter. J. Clim., 27, 2164–2176.CrossRefGoogle Scholar
  2. An S.-I. and Jin F.-F., 2004. Nonlinearity and asymmetry of ENSO. J. Clim., 17, 2399–2412.CrossRefGoogle Scholar
  3. An S.-I. and Choi J., 2009. Seasonal locking of the ENSO asymmetry and its influence on the seasonal cycle of the tropical eastern Pacific sea surface temperature. Atmos. Res., 94, 3–9.CrossRefGoogle Scholar
  4. Antonov J.I., Levitus S. and Boyer T.P., 2005. Thermosteric sea level rise, 1955–2003. Geophys. Res. Lett., 32, L12602, DOI: 10.1029/2005GL023112.CrossRefGoogle Scholar
  5. Bjerknes J., 1969. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev., 97, 163–172.CrossRefGoogle Scholar
  6. Burgers G. and Stephenson D.B., 1999. The “Normality” of El Niño. Geophys. Res. Lett., 26, 1027–1030.CrossRefGoogle Scholar
  7. Cane M.A., 1984. Modeling sea level during El Niño. J. Phys. Oceanogr., 14, 1864–1874.CrossRefGoogle Scholar
  8. Cazenave A., Cabanes C., Dominh K., Gennero M.C. and Le Provost C., 2003. Present-day sea level change: observations and causes. Space Sci. Rev., 108, 131–144.CrossRefGoogle Scholar
  9. Cazenave A., Lombard A. and Llovel W., 2008. Present-day sea level rise: A synthesis. C. R. Geosci., 340, 761–770.CrossRefGoogle Scholar
  10. Changnon S.A. (Ed.), 2000. El Niño 1997-1998: The Climate Event of the Century. Oxford University Press, USA.Google Scholar
  11. Chao B.F., 1984. Interannual length-of-day variations with relation to the Southern Oscillation/El Niño. Geophys. Res. Lett., 11, 541–544.CrossRefGoogle Scholar
  12. Chao B.F., 1988. Correlation of interannual length-of-day variation with El Niño/Southern Oscillation, 1972—1986. J. Geophys. Res., 93, 7709–7715.CrossRefGoogle Scholar
  13. Cheng X., Qi Y. and Zhou W., 2008. Trends of sea level variations in the Indo-Pacific warm pool. Global Planet. Change, 63, 57–66.CrossRefGoogle Scholar
  14. Chiew F.H.S. and McMahon T.A., 2002. Global ENSO-streamflow teleconnection, streamflow forecasting and interannual variability. Hydrol. Sci. J., 47, 505–522.CrossRefGoogle Scholar
  15. Clarke A.J., Wang J. and Van Gorder S., 2000. A simple warm-pool displacement ENSO model. J. Phys. Oceanogr., 30, 1679–1691; Corrigendum, J. Phys. Oceanogr., 30, 3271.CrossRefGoogle Scholar
  16. Clarke A.J., 2008. An Introduction to the Dynamics of El Niño & the Southern Oscillation. Academic Press, Elsevier, Amsterdam, Boston, Heidelberg, London, New York, Oxford, Paris, San Diego, San Francisco, Singapore, Sydney, Tokyo.Google Scholar
  17. D’Agostino R.B., Belanger A. and D’Agostino R.B., Jr., 1990. A suggestion for using powerful and informative tests of normality. Am. Stat., 44, 316–321.Google Scholar
  18. Dettinger M.D. and Diaz H.F., 2000. Global characteristics of stream flow seasonality and variability. J. Hydrometeorol., 1, 289–310.CrossRefGoogle Scholar
  19. Duan W.S. and Mu M., 2006. Investigating decadal variability of El Nino-Southern Oscillation asymmetry by conditional nonlinear optimal perturbation, J. Geophys. Res., 111, C07015, DOI: 10.1029/2005JC003458.Google Scholar
  20. Duan W., Xu H. and Mu M., 2008. Decisive role of nonlinear temperature advection in El Niño and La Niña amplitude asymmetry. J. Geophys. Res., 113, C01014, DOI: 10.1029/2006JC003974.Google Scholar
  21. Galanti E. and Tziperman E., 2000. ENSO’s phase locking to the seasonal cycle in the fast-SST, fastwave, and mixed-mode regimes. J. Atmos. Sci., 57, 2936–2950.CrossRefGoogle Scholar
  22. Gergis J.L. and Fowler A.M., 2009. A history of ENSO events since A.D. 1525: implications for future climate change. Clim.c Change, 92, 343–387.CrossRefGoogle Scholar
  23. Gross R.S., Marcus S.L., Eubanks T.M., Dickey J.O. and Keppenne L., 1996. Detection of an ENSO signal in seasonal length-of-day variations. Geophys. Res. Lett., 23, 3373–3376.CrossRefGoogle Scholar
  24. Hunt B.G. and Elliot T.I., 2003. Secular variability of ENSO events in a 1000-year climatic simulation. Clim. Dyn., 20, 689–703.Google Scholar
  25. Jin F.-F., 1997a. An equatorial ocean recharge paradigm for ENSO. Part I: conceptual model. J. Atmos. Sci., 54, 811–829.CrossRefGoogle Scholar
  26. Jin F.-F., 1997b. An equatorial ocean recharge paradigm for ENSO. Part II: A stripped-down coupled model. J. Atmos. Sci., 54, 830–847.CrossRefGoogle Scholar
  27. Jin F.-F. and An S.-I., Timmermann A., Zhao J., 2003. Strong El Niño events and nonlinear dynamical heating. Geophys. Res. Lett., 30, 1120, DOI: 10.1029/2002GL016356.CrossRefGoogle Scholar
  28. Kiladis G.N. and Diaz H.F., 1989. Global climatic anomalies associated with extremes in the Southern Oscillation. J. Climate, 2, 1069–1090.CrossRefGoogle Scholar
  29. Koopmans L.H., 1974. The Spectral Analysis of Time Series. Academic Press, New York.Google Scholar
  30. Kosek W. and Popinski W., 1999. Comparison of spectro-temporal analysis methods on polar motion and its atmospheric excitation. Artif. Satel., 34, 65–75.Google Scholar
  31. Miller A.J., Cayan D.R., Barnett T.P., Graham N.E. and Oberhuber J.M., 1994. The 1976–77 climate shift of the Pacific Ocean. Oceanography, 7, 21–26.CrossRefGoogle Scholar
  32. Niedzielski T., 2010. Non-linear sea level variations in the eastern tropical Pacific. Artif. Satel., 45, 1–10.CrossRefGoogle Scholar
  33. Niedzielski T. and Kosek W., 2010. El Niño’s impact on the probability distribution of sea level anomaly fields. Polish J. Environ. Stud., 19, 611–620.Google Scholar
  34. Okumura Y.M. and Deser C., 2010. Asymmetry in the duration of El Niño and La Niña. J. Climate, 23, 5826–5843.CrossRefGoogle Scholar
  35. Philander S.G., 1990. El Niño, La Niña, and the Southern Oscillation. Academic Press, San Diego.Google Scholar
  36. Potemra J.T. and Lukas R., 1999. Seasonal to interannual modes of sea level variability in the western Pacific and eastern Indian Oceans. Geophys. Res. Lett., 26, 365–368.CrossRefGoogle Scholar
  37. Rodgers K.B., Friederichs P. and Latif M., 2004. Tropical Pacific decadal variability and its relation to decadal modulations of ENSO. J. Climate, 17, 3761–3774.CrossRefGoogle Scholar
  38. Ropelewski C.F. and Halpert M.S., 1987. Global and regional scale precipitation patterns associated with the El Niño/Southern Oscillation. Mon. Weather Rev., 115, 1606–1627.CrossRefGoogle Scholar
  39. Rosen R.D., Salstein D.A., Eubanks T.M., Dickey J.O. and Steppe J.A., 1984. An El Niño signal in atmospheric angular momentum and Earth rotation. Science, 225, 411–414.CrossRefGoogle Scholar
  40. Sarachik E.S. and Cane M.A., 2010. The El Niño-Southern Oscillation Phenomenon. Cambridge University Press, Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, Sao Paulo, Delhi, Dubai, Tokyo.CrossRefGoogle Scholar
  41. Schopf P.S. and Suarez M.J., 1988. Vacillations in a coupled ocean-atmosphere model. J. Atmos. Sci., 45, 549–566.CrossRefGoogle Scholar
  42. Singleton R.C., 1969. An Algorithm for Computing the Mixed Radix Fast Fourier Transform. IEEE Trans. Audio Electroacoust., Au-17(2), 93–103.CrossRefGoogle Scholar
  43. Trenberth K.E., 1997. The Definition of El Niño. Bull. Amer. Meteorol. Soc., 78, 2771–2777.CrossRefGoogle Scholar
  44. Trenberth K.E., Branstator G.W., Karoly D., Kumar A., Lau N.-C. and Ropelewski C., 1998. Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures. J. Geophys. Res., 103(C7), 14291–14324.CrossRefGoogle Scholar
  45. Wang B. and An S.-I., 2001. Why the properties of El Niño changed during the late 1970s. Geophys. Res. Lett., 28, 3709–3712.CrossRefGoogle Scholar
  46. Wyrtki K., 1979. The response of sea surface topography to the 1976 El Niño. J. Phys. Oceanogr., 9, 1223–1231.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2014

Authors and Affiliations

  • Małgorzata Świerczyńska
    • 1
  • Tomasz Niedzielski
    • 1
  • Wiesław Kosek
    • 2
    • 3
  1. 1.Institute of Geography and Regional DevelopmentUniversity of WrocławWrocławPoland
  2. 2.Faculty of Environmental Engineering and Land SurveyingUniversity of Agriculture in KrakówKrakówPoland
  3. 3.Space Research CentrePolish Academy of SciencesWarsawPoland

Personalised recommendations