Studia Geophysica et Geodaetica

, Volume 58, Issue 1, pp 148–169 | Cite as

Performance of ALADIN-Climate/CZ over the area of the Czech Republic in comparison with ENSEMBLES regional climate models

  • Lenka Crhová
  • Eva Holtanová
  • Jaroslava Kalvová
  • Aleš Farda
Article

Abstract

Nowadays Regional Climate Models (RCMs) are increasingly used for downscaling of information from the coarse resolution of global climate models (GCMs) and they represent a more and more popular tool for assessment of future climate changes and their impacts at regional scales. In spite of continual progress of RCMs, their outputs still suffer from many uncertainties and biases. Therefore, it is necessary to assess their ability to simulate observed climate characteristics and uncertainties in their outputs before they are applied in subsequent studies. In the present study, the assessment of RCM performance in simulating climate in the reference period of 1961–1990 over the area of Czech Republic is presented. Furthermore, we focused on the intercomparison of the models’ results, mainly on the comparison of the Czech model ALADIN-Climate/CZ with outputs of other RCMs. Simulation of ALADIN-Climate/CZ in 25-km horizontal resolution, and thirteen RCM simulations from the ENSEMBLES project were assessed. Attention was paid especially to comparison of simulated and observed spatial and temporal variability of several climatic variables. The monthly and seasonal values of surface air temperature, precipitation totals and relative humidity were examined for evaluation of temporal variability and 30-year seasonal and monthly values with respect to spatial variability. Climate model performance was evaluated in several ways, namely by boxplots, maps of variability characteristics, skill scores based on mean square error and Taylor diagrams. Model errors detected by model evaluation depend on many factors (e.g. considered variables and their characteristics, area of analysis, time scale of interest and the method of assessment). On the basis of incorporated performance criteria model ALADIN-Climate/CZ belonged to a better group of RCMs in most cases. However, it was definitely the worst in simulating spring monthly means of air temperature and relative humidity in all seasons.

Keywords

regional climate model climate model performance Taylor diagram skill score 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Christensen J.H., Hewitson B., Busuioc A., Chen A., Gao X., Held I., Jones R., Kolli R.K., Kwon W.-T., Laprise R., Magaña Rueda V., Mearns L., Menéndez C.G., Räisänen J., Rinke A., Sarr A. and Whetton P., 2007. Regional climate projections. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L., (Eds.), Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, U.K., 847–940.Google Scholar
  2. Christensen J.H., Kjellström E., Giorgi F., Lenderink G. and Rummukainen M., 2010. Weight assignment in regional climate models. Clim. Res., 44, 179–194. DOI: 10.3354/cr00916.CrossRefGoogle Scholar
  3. Crhová L., 2011. Posouzení schopnosti regionálních klimatických modelů simulovat klima na území ČR (Assessment of Regional Climate Models Performance in Simulating Present-Day Climate over the Area of the Czech Republic). MSc Thesis, Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic (in Czech).Google Scholar
  4. Déqué M., 2007. Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: Model results and statistical correction according to observed values. Global Planet. Change, 57, 16–26.CrossRefGoogle Scholar
  5. Déqué M., Dreveton C., Braun A. and Cariolle D., 1994. The ARPEGE/IFS atmosphere model: a contribution to the French community climate modelling. Clim. Dyn., 10, 249–266.CrossRefGoogle Scholar
  6. Farda A., Déué M., Somot S., Horányi A., Spiridonov V. and Tóth H., 2010. Model ALADIN as regional climate model for central and eastern Europe. Stud. Geophys. Geod., 54, 313–332.CrossRefGoogle Scholar
  7. Forster P., Ramaswamy V., Artaxo P., Berntsen T., Betts R., Fahey D.W., Haywood J., Lean J., Lowe D.C., Myhre G., Nganga J., Prinn R., Raga G., Schulz M. and Van Dorland R., 2007. Changes in atmospheric constituents and in radiative forcing. In: Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L., (Eds.), Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, U.K., 130–234.Google Scholar
  8. Gleckler P.J., Taylor K.E. and Doutriaux C., 2008. Performance metrics for climate models. J. Geophys. Res., 113, D06104, DOI: 10.1029/2007JD008972.Google Scholar
  9. Holtanová E., Motl M. and Kalvová J., 2009. Evaluation of regional climate models performance over the area of the Czech Republic. (http://ensembles-eu.metoffice.com/meetings/GA6_Exeter_2009/posters/EHoltanova_rcm_czech_republic.pdf).Google Scholar
  10. Holtanová E., Kalvová J., Mikšovský J., Pišoft P. and Motl M., 2010. Analysis of uncertainties in regional climate model outputs over the Czech Republic. Stud. Geophys. Geod., 54, 513–528CrossRefGoogle Scholar
  11. Holtanová E., Kalvová J., Pišoft P. and Mikšovský J., 2013. Uncertainty in regional climate models outputs over the Czech Republic: the role of nested and driving models. Int. J. Clim., DOI: 10.1002/joc.3663.Google Scholar
  12. Holtanová E., Mikšovský J., Kalvová J., Pišoft P. and Motl M., 2012. Performance of ENSEMBLES regional climate models over Central Europe using various metrics. Theor. Appl. Climatol., 108, 463–470.CrossRefGoogle Scholar
  13. Johns T.C., Gregory J.M., Ingram W.J., Johnson C.E., Jones A., Lowe J.A., Mitchell J.F.B., Roberts D.L., Sexton D.M.H., Stevenson D.S., Tett S.F.B. and Woodage M.J., 2003. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Clim. Dyn., 20, 583–612.Google Scholar
  14. Kalvová J., Holtanová E., Motl M., Mikšovský J., Pišoft P. and Raidl A., 2010. Odhady rozsahu změn klimatu na území České republiky pro tři časová období 21. století na základě výstupů AR4 modelů (Assessment of the range of future climate change in the Czech Republic for three time periods in 21st century based on AR4 models outputs). Meteorologické zprávy, 63, 57–66 (in Czech).Google Scholar
  15. Kjellström E., Boberg F., Castro M., Christensen J.H., Nikulin G., Sánchez E., 2010. Daily and monthly temperature and precipitation statistics as performance indicators for regional climate models. Clim. Res., 44, 135–150.CrossRefGoogle Scholar
  16. Meehl G.A., Covey C., Taylor K.E., Delwort T., Stouffer R.J., Latif M., McAvaney B. and Mitchell J.F.B., 2007. The WCRP CMIP3 multi-model dataset: A new era in climate change research. Bull. Amer. Meteor. Soc., 88, 1383–1394.CrossRefGoogle Scholar
  17. Murphy A.H., 1988. Skill scores based on the mean square error and their relationships to the correlation coefficient. Mon. Weather Rev., 166, 2418–2424.Google Scholar
  18. McSweeney C. and Jones R., 2010. Selecting Members of the ‘QUMP’ Perturbed-Physics Ensemble for Use with PRECIS. (http://www.metoffice.gov.uk/media/pdf/e/3/SelectingCGMsToDownscale.pdf).Google Scholar
  19. Pierce D.W., Barnett T.P., Santer B.D. and Gleckler P.J., 2009. Selecting global climate models for regional climate change studies. Proc. Natl. Acad. Sci. U. S. A., 106, 8441–8446.CrossRefGoogle Scholar
  20. Pretel J. (Ed.), 2010. Zpřesnění dosavadních odhadů dopadů klimatické změny v sektorech vodního hospodářství, zemědělství a lesnictví a návrhy adaptačních opatření (Specification of Existing Estimates of Climate Change Impacts in Hydrology, Water Management, Agriculture and Forestry Sectors and Proposals for Adaptation Option). Technical Report 2007-2011. Czech Hydrometeorological Institue, Praha, Czech Republic (http://www.chmi.cz/files/portal/docs/meteo/ok/klimazmena/files/vav_TECHNICKE_SHRNUTI_2011.pdf, in Czech).Google Scholar
  21. Roeckner E., Bäuml G., Bonaventura L., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kirchner I., Kornblueh L., Manzini E., Rhodin A., Schlese U., Schulzweida U. and Tompkins A., 2003. The Atmospheric General Circulation Model ECHAM 5. PART I: Model Description. MPI Report No 349, Max Planck Institute for Meteorology, Hamburg, Germany.Google Scholar
  22. Roeckner E., Brokopf R., Esch M., Giorgetta M., Hagemann S., Kornblueh L., Manzini E., Schlese U. and Schulzweida U., 2004. The Atmospheric General Circulation Model ECHAM 5. PART II: Sensitivity of Simulated Climate to Horizontal and Vertical Resolution. MPI Report No. 354, Max Planck Institute for Meteorology, Hamburg, Germany.Google Scholar
  23. Rummukainen M., 2010. State-of-the-art with regional climate models. Wiley Interdisciplinary Reviews-Climate Change, 1, 82–96.CrossRefGoogle Scholar
  24. Sánchez E., Romera R., Gaertner M.A., Gallardo C. and Castro M., 2009. A weighting proposal for an ensemble of regional climate models over Europe driven by 1961-2000 ERA40 based on monthly precipitation probability density functions. Atmos. Sci. Lett., 10, 241–248. DOI: 10.1002/asl.230.Google Scholar
  25. Santer B.D., Taylor K.E., Gleckler P.J., Bonfils C., Barnett T.P., Pierce D.W., Wigley T.M.L., Mars C., Wentz F.J., Brüggemanne W., Gillett N.P., Klein S.A., Salomon S., Stott P.A. and Wehneret M.F., 2009. Incorporating model quality information in climate change detection and attribution studies. Proc. Natl. Acad. Sci. U. S. A., 106, 14778–14783CrossRefGoogle Scholar
  26. Schultz B.B., 1985. Levene’s test for relative variation. Syst. Biol., 34, 449–456.CrossRefGoogle Scholar
  27. Skalák P., Štěpánek P. and Farda A., 2008. Validation of ALADIN-Climate/CZ for present climate (1961–1990) over the Czech Republic. Idöjárás, 112, 191–201.Google Scholar
  28. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L., (Eds.), Climate Change 2007: The Physical Science Basis. Cambridge University Press, Cambridge, U.K.Google Scholar
  29. Suklitsch M., Gobiet A., Truhetz H., Awan N.K., Göttel H. and Jacob D., 2011. Error characteristics of high resolution regional climate models over the Alpine area. Clim. Dyn., 37, 377–390. DOI: 10.1007/s00382-010-0848-5.CrossRefGoogle Scholar
  30. Štěpánek P., Zahradníček P. and Huth R., 2011. Interpolation techniques used for data quality control and calculation of technical series: an example of Central European daily time series. Idöjárás, 155, 87–98.Google Scholar
  31. Štěpánek P., Zahradníček P. and Skalák P., 2009. Data quality control and homogenization of air temperature and precipitation series in the area of the Czech Republic in the period 1961–2007. Adv. Sci. Res., 3, 23–26.CrossRefGoogle Scholar
  32. Štěpánek P., 2008. ProClimDb — Software for Processing Climatological Datasets. Czech Hydrometeorological Institute, Brno, Czech Republic (http://www.climahom.eu/ProcData.html)Google Scholar
  33. Taylor K.E., 2001. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res., 106, 7183–7192.CrossRefGoogle Scholar
  34. Tebaldi C. and Knutti R., 2007. The use of the multi-model ensemble in probabilistic climate projections. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 365, 2053–2075.CrossRefGoogle Scholar
  35. van den Hurk B., Klein Tank A., Lenderink G., van Ulden A., van Oldenborgh G.J., Katsman C., van den Brink H., Keller F., Bessembinder J., Burgers G., Komen G., Hazeleger W. and Drijfhout S., 2006. KNMI Climate Change Scenarios 2006 for the Netherlands. KNMI Scientific Report WR 2006-01, The Royal Netherlands Meteorological Institute, De Bilt, The Netherlands (http://www.knmi.nl/klimaatscenarios/knmi06/WR23mei2006.pdf).Google Scholar
  36. van der Linden P. and Mitchell J.F.B. (Eds.), 2009. ENSEMBLES: Climate Change and its Ipacts. Met Office Hadley Centre, FitzRoy Road, Exeter EX1 3PB, U.K. (http://ensembleseu.metoffice.com/docs/Ensembles_final_report_Nov09.pdf).Google Scholar
  37. van Ulden A.P. and van Oldenborgh G.J., 2006. Large-scale atmospheric circulation biases and changes in global climate model simulations and their importance for climate change in Central Europe. Atmos. Chem. Phys., 6, 863–881.CrossRefGoogle Scholar
  38. Xu Y., Gao X. and Giorgi F., 2010. Upgrades to the reliability ensemble averaging method for producing probabilistic climate-change projections. Clim. Res., 41, 61–1, DOI:.3354/cr00835.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2013

Authors and Affiliations

  • Lenka Crhová
    • 1
  • Eva Holtanová
    • 1
  • Jaroslava Kalvová
    • 1
  • Aleš Farda
    • 2
  1. 1.Department of Meteorology and Environment Protection, Faculty of Mathematics and PhysicsCharles University in PraguePraha 8Czech Republic
  2. 2.Global Change Research Centre AS CRBrnoCzech Republic

Personalised recommendations