Studia Geophysica et Geodaetica

, Volume 57, Issue 4, pp 710–740 | Cite as

Petrophysical and geochemical constraints on alteration processes in granites

  • Matěj Machek
  • Zuzana Roxerová
  • Vojtěch Janoušek
  • Martin Staněk
  • Eduard Petrovský
  • Miloš René


The hydrothermal alteration of granites has large influence on their petrophysical properties. To reveal the impact of alteration on magnetic and porosity properties of granites we have conducted a complex study of effects of two largely independent alteration processes, related to chemically different fluids, in granites of the Vysoký Kámen stock (the Krudum granite body, Czech Republic). It includes the whole-rock geochemical, magnetic and pore-space characterization. The alkali feldspathization resulted in decomposition of Li-mica, quartz removal, depletion in mafic cations and growth of new alkali feldspars (albite, K-feldspar), decreasing the overall magnetic susceptibility and disrupting the pore space by its discontinuation. The preservation of the orientation of the principal susceptibility axes is likely related to insignificant influence of the feldspathization process on the paramagnetic and diamagnetic phases orientation acquired during the magma emplacement. The greisenization, on the other hand had considerably more significant effects on microstructure and physical properties of the granite. The microstructure was modified by the growth of large amounts of new phases (Li-mica, quartz and topaz). This changed the mineral density of the rock, the porosity, size and character of pores to larger, flatter and probably more connected. This led also to the complete reworking of the original anisotropy of magnetic susceptibility during the greisenization.


feldspathization greisenization anisotropy of magnetic susceptibility (AMS) porosity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ague J.J., 1994. Mass transfer during barrovian metamorphism of pelites, south-central connecticut; i, evidence for changes in composition and volume. Amer. J. Sci., 294, 989–1057.CrossRefGoogle Scholar
  2. Alderton D.H.M., Pearce J.A. and Potts P.J., 1980. Rare earth element mobility during granite alteration: evidence from southwest england. Earth Planet. Sci. Lett., 49, 149–165.CrossRefGoogle Scholar
  3. Beus A.A., 1962. Wall rock alterations of hydrothermal-pneumatolytic deposits of rare elements. Int. Geol. Rev., 4, 1144–1153.CrossRefGoogle Scholar
  4. Blecha V. and Štemprok M., 2012. Petrophysical and geochemical characteristics of late variscan granites in the Karlovy Vary massif (Czech republic) — implications for gravity and magnetic interpretation in shallow depths. J. Geosci., 57, 65–85.CrossRefGoogle Scholar
  5. Bonin B., 2008. Death of super-continents and birth of oceans heralded by discrete A-type granite igneous events: the case of the Variscan-Alpine Europe. J. Geosci., 53, 237–252.Google Scholar
  6. Borradaile G.J. and Jackson M., 2010. Structural geology, petrofabrics and magnetic fabrics (AMS, AARM, AIRM). J. Struct. Geol., 32, 1519–1551CrossRefGoogle Scholar
  7. Bouchez J.L., 2000. Anistropie de susceptibilité magnétique et fabrique des granites. C. R. Acad. Sci., 330, 1–14.Google Scholar
  8. Boynton W.V., 1984. Cosmochemistry of the rare earth elements: meteorite studies. In: P. Henderson (Ed.), Rare Earth Element Geochemistry. Elsevier, Amsterdam, 63–114.CrossRefGoogle Scholar
  9. Breiter K., Förster H.-J. and Seltmann R., 1999. Variscan silicic magmatism and related tin-tungsten mineralization in the erzgebirge-slavkovský les metallogenic province. Miner. Depos., 34, 505–521.CrossRefGoogle Scholar
  10. Brown M., 2001. Crustal melting and granite magmatism: key issues. Phys. Chem. Earth (A), 26, 201–212.CrossRefGoogle Scholar
  11. Bucholz C.E. and Ague J.J., 2010. Fluid flow and Al transport during quartz-kyanite vein formation, Unst, Shetland Islands, Scotland. J. Metamorph. Geol., 28, 19–39.CrossRefGoogle Scholar
  12. Cathelineau M., 1986. Alkali metasomatism and quartz dissolution (‘feldspathization’). J. Petrol., 27, 945–965.CrossRefGoogle Scholar
  13. Chadima M. and Jelínek V., 2008. Anisoft 4.2. — Anisotropy Data Browser. Contributions to Geophysics and Geodesy, 38, 41.Google Scholar
  14. Chappell B.W., 2004. Towards a unified model for granite genesis. Trans. R. Soc. Edinb. Earth Sci., 95, 1–10.CrossRefGoogle Scholar
  15. Clarke D.B., 1992. Granitoid Rocks. Chapman & Hall, London, U.K.Google Scholar
  16. Clemens J.D., 2003. S-type granitic magmas — petrogenetic issues, models and evidence. Earth Sci. Rev., 61, 1–18.CrossRefGoogle Scholar
  17. Clemens J.D. and Droop G.T.R., 1998. Fluids, p-t paths and the fates of anatectic melts in the earth’s crust. Lithos, 44, 21–36.CrossRefGoogle Scholar
  18. Day R., Fuller M.D. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain size and composition dependence. Phys. Earth Planet. Inter., 13, 260–266.CrossRefGoogle Scholar
  19. De La Roche H., Leterrier J., Grandclaude P. and Marchal M., 1980. A classification of volcanic and plutonic rocks using r1r2-diagram and major element analyses — its relationships with current nomenclature. Chem. Geol., 29, 183–210.CrossRefGoogle Scholar
  20. Debon F. and Le Fort P., 1983. A chemical-mineralogical classification of common plutonic rocks and associations. Trans. R. Soc. Edinb. Earth Sci., 73, 135–149.CrossRefGoogle Scholar
  21. Dolejš D. and Štemprok M., 2001. Magmatic and hydrothermal evolution of Li-F granites: Cínovec and Krásno intrusions, Krušné hory Batholith, Czech Republic. Bull. Czech Geol. Surv., 76, 77–99.Google Scholar
  22. Dolejš D. and Wagner T., 2008. Thermodynamic modeling of non-ideal mineral-fluid equilibria in the system Si-Al-Fe-Mg-Ca-Na-K-H-O-Cl at elevated temperatures and pressures: Implications for hydrothermal mass transfer in granitic rocks. Geochim. Cosmochim. Acta, 72, 526–553.CrossRefGoogle Scholar
  23. Dolníček Z., René M., Prochaska W. and Kovář M., 2012. Fluid evolution of the Hub stock, Horní Slavkov-Krásno Sn-W ore district, Bohemian Massif, Czech Republic. Miner. Depos., 47, 821–833.CrossRefGoogle Scholar
  24. Dunlop D.J., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107,B3, 2056.CrossRefGoogle Scholar
  25. Finger F., Gerdes A., René M. and Riegler G., 2009. The SaxoDanubian Granite Belt: magmatic response to post-collisional delamination of mantle lithosphere below the south-western sector of the Bohemian Massif (Variscan orogen). Geol. Carpath., 60, 205–212.CrossRefGoogle Scholar
  26. Förster H.-J. and Romer R.L., 2010. Carboniferous magmatism. In: Linnemann U. and Romer R.L. (Eds.), Pre-Mesozoic Geology of Saxo-Thuringia — From the Cadomian Active Margin to the Variscan Orogen. Schweizerbart, Stuttgart, Germany, 287–308.Google Scholar
  27. Förster H.-J., Tischendorf G., Seltmann R. and Gotesmann B., 1998. Die variszischen Granite des Erzgebirges: neue Aspekte aus stofflicher Sicht. Z. Geol. Wiss., 26, 31–60 (in German).Google Scholar
  28. Förster H.-J., Tischendorf G., Trumbull R.B. and Gottesmann B., 1999. Late-collisional granites in the Variscan Erzgebirge (Germany). J. Petrol., 40, 1613–1645.CrossRefGoogle Scholar
  29. Géraud Y., Mazerolle F. and Raynaud S., 1993. Essai de quantification de la porosité d’un granite altéré. Utilisation du scanner médical (tomodensitométrie x). Bull. Soc. Géol. France, 164(2), 243–253 (in French).Google Scholar
  30. Giesche H., 2006. Mercury porosimetry: A general (practical) overview. Part. Syst. Charact., 23, 9–19.CrossRefGoogle Scholar
  31. Grant J.A., 1986. The isocon diagram — a simple solution to Gresens’ equation for metasomatic alteration. Econ. Geol., 81, 1976–1982.CrossRefGoogle Scholar
  32. Grant J.A., 2005. Isocon analysis: A brief review of the method and applications. Phys. Chem. Earth A, 30, 997–1004.CrossRefGoogle Scholar
  33. Heinrich C., 1990, The chemistry of hydrothermal tin(-tungsten) ore deposition. Econ. Geol., 85, 457–481.CrossRefGoogle Scholar
  34. Hrouda F., 1994. A technique for the measurement of thermal-changes of magnetic-susceptibility of weakly magnetic rocks by the Cs-2 apparatus and Kly-2 kappabridge. Geophys. J. Int., 118, 604–612.CrossRefGoogle Scholar
  35. Hrouda F., 2004. Problems in interpreting AMS parameters in diamagnetic rocks. In: Martin-Hernandez F., Luneburg C., Aubourg C. and Jackson M. (Eds.), Magnetic Fabric: Methods and Applications. Geol. Soc. London Spec. Publ. 238, London, U.K., 49–59.Google Scholar
  36. Hrouda F., Jelínek V. and Hrušková L., 1990. A package of programs for statistical evaluation of magnetic data using IBM-PC computers. Eos Trans. AGU, 71, 1289.Google Scholar
  37. IAEA, 2011. Geological disposal facilities for radioactive waste, specific safety guide. IAEA Safety Standards Series No. SSG-14, International Atomic Energy Agency, Vienna, Austria.Google Scholar
  38. Irber W., 1999. The lanthanide tetrad effect and its correlation with K/Rb, Eu/Eu*, Sr/Eu, Y/Ho, and Zr/Hf of evolving peraluminous granite suites. Geochim. Cosmochim. Acta, 63, 489–508.CrossRefGoogle Scholar
  39. Janoušek V., Farrow C.M. and Erban V., 2006. Interpretation of whole-rock geochemical data in igneous geochemistry: Introducing geochemical data toolkit (GCDkit). J. Petrol., 47, 1255–1259.CrossRefGoogle Scholar
  40. Janoušek V., Farrow C.M., Erban V. and Trubač J., 2011. Brand new Geochemical Data Toolkit (GCDkit 3.0) — Is it worth upgrading and browsing documentation? (Yes!). Geol. Výzk. Mor. Slez., 18, 26–30 ( Scholar
  41. Jarchovský T., 2006. The nature and genesis of greisen stocks at Krásno, Slavkovský Les area — Western Bohemia, Czech Republic. J. Czech Geol. Soc., 51, 201–216.Google Scholar
  42. Jelínek V., 1978. Statistical processing of anisotropy of magnetic susceptibility measured on groups of specimens. Stud. Geophys. Geod., 22, 50–62.CrossRefGoogle Scholar
  43. Jelínek V. and Pokorný J., 1997. Some new concepts in technology of transformer bridges for measuring susceptibility anisotropy of rocks. Phys. Chem. Earth, 22, 179–181.CrossRefGoogle Scholar
  44. Just J. and Kontny A., 2012. Thermally induced alterations of minerals during measurements of the temperature dependence of magnetic susceptibility: a case study from the hydrothermally altered Soultz-sous-Forêts granite, France. Int. J. Earth. Sci., 101, 819–839.CrossRefGoogle Scholar
  45. Kempe U., Bombach K., Schlothauer T., Hutschenreuter J., Wolf D., Matukov D. and Sergeev S., 2004. Pb/Pb and U/Pb zircon dating of subvolcanic rhyolite as a time marker for hercynian granite magmatism and Sn mineralisation in the Eibenstock granite, Erzgebirge, Germany: Considering effects of zircon alteration. Miner. Depos., 39, 646–669.CrossRefGoogle Scholar
  46. Keppler H. and Wyllie P.J., 1990. Role of fluids in transport and fractionation of uranium and thorium in magmatic processes. Nature, 348, 531–533.CrossRefGoogle Scholar
  47. Kovaříková P., Siebel W., Jelínek E., Štemprok M., Kachlík V., Holub F.V. and Blecha V., 2007. Petrology, geochemistry and zircon age for redwitzite at Abertamy, NW Bohemian Massif (Czech Republic): Tracing the mantle component in late variscan intrusions. Chem. Erde, 67, 151–174.CrossRefGoogle Scholar
  48. Kovaříková P., Siebel W., Jelínek E., Štemprok M., Kachlík V., Holub F.V. and Blecha V., 2010. Dioritic intrusions of the Slavkovský Les (Kaiserwald), Western Bohemia: Their origin and significance in late variscan granitoid magmatism. Int. J. Earth Sci., 99, 545–565.CrossRefGoogle Scholar
  49. Li Y. and Wardlaw N.C. 1986a. The influence of wettability and critical pore-throat size ratio on snap-off. J. Colloid Interface Sci., 109, 461–472.CrossRefGoogle Scholar
  50. Li Y. and Wardlaw N.C. 1986b. Mechanism of non wetting phase trapping during imbibition at slow rates. J. Colloid Interface Sci., 109, 473–486.CrossRefGoogle Scholar
  51. Machek M., Kratinová Z., René. M., Janoušek V. and Roxerová Ž., 2011. Nature and petrogenesis of topaz-bearing granites — a case study of the Krudum granite body (Slavkovský les Mts., Czech Republic). Travaux Geophys., XL, 78.Google Scholar
  52. Masuda A., Kawakami O., Dohmoto Y. and Takenaka T., 1987. lanthanide tetrad effects in nature: Two mutually opposite types, W and M. Geochem. J., 119–124.Google Scholar
  53. Monecke T., Kempe U., Monecke J., Sala M. and Wolf D., 2002. tetrad effect in rare earth element distribution patterns; a method of quantification with application to rock and mineral samples from granite-related rare metal deposits. Geochim. Cosmochim. Acta, 66, 1185–1196.CrossRefGoogle Scholar
  54. Monecke T., Kempe U., Trinkler M., Thomas R., Dulski P. and Wagner T., 2011. Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology, 39, 295–298CrossRefGoogle Scholar
  55. Nabelek P.I. and Liu M., 2004. Petrologic and thermal constraints on the origin of leucogranites in collisional orogens. Trans. R. Soc. Edinb. Earth Sci., 95, 73–85.CrossRefGoogle Scholar
  56. Nur A. and Simmons G., 1969. The effect of saturation on velocity in low porosity rocks. Earth Planet. Sci. Lett., 7, 183–193.CrossRefGoogle Scholar
  57. Paterson S.R., Fowler Jr. T.K., Schmidt K.L., Yoshinobu A.S., Yuan E.S. and Miller R.B., 1998. Interpreting magmatic fabric patterns in plutons. Lithos, 44, 53–82.CrossRefGoogle Scholar
  58. Paterson S.R., Vernon R.H. and Tobisch O.T. 1989. A review of criteria for the identification of magmatic and tectonic foliations in granitoids. J. Struct. Geol., 11, 349–363.CrossRefGoogle Scholar
  59. Petford N., Cruden A.R., McCaffrey K.J.W. and Vigneresse J.L., 2000. Granite magma formation, transport and emplacement in the Earth’s crust. Nature, 408, 669–673.CrossRefGoogle Scholar
  60. Pitcher W.S., 1993. The Nature and Origin of Granite, Chapman & Hall, London, U.K.CrossRefGoogle Scholar
  61. Pollard P.J., 1983. Magmatic and postmagmatic processes in the formation of rocks associated with rare-element deposits. Trans. Inst. Min. Metal., B92, 1–9.Google Scholar
  62. René M., 1998. Development of topaz-bearing granites of the Krudum massif (Karlovy Vary pluton). Acta Univ. Carol. Geol., 42, 103–109.Google Scholar
  63. René M. and Škoda R., 2011. Nb-Ta-Ti oxides fractionation in rare-metal granites: Krásno-Horní Slavkov ore district, Czech Republic. Mineral. Petrol., 103, 37–48.CrossRefGoogle Scholar
  64. Rochette P., Aubourg C. and Perrin M., 1999. Is this magnetic fabric normal? A review and case studies in volcanic formations. Tectonophysics, 307, 219–234.CrossRefGoogle Scholar
  65. Romer R.L., Thomas R., Stein H.J. and Rhede D., 2007. Dating multiply overprinted Snmineralized granites — examples from the Erzgebirge, Germany. Miner. Depos., 42, 337–359.CrossRefGoogle Scholar
  66. Rosener M. and Géraud Y., 2007. Using physical properties to understand the porosity network geometry evolution in gradually altered granites in damage zones. Geol. Soc. London Spec. Publ., 284, 175–184.CrossRefGoogle Scholar
  67. Rubin J.N., Henry C.D. and Price J.G., 1993. The mobility of zirconium and other ‘immobile’ elements during hydrothermal alteration. Chem. Geol., 110, 29–47.CrossRefGoogle Scholar
  68. Sawyer E.W., Cesare B. and Brown M., 2011. When the continental crust melts. Elements, 7, 229–234.CrossRefGoogle Scholar
  69. Scherba G.N., 1970. Greisens. Inter. Geol. Rev., 12, 114–150.CrossRefGoogle Scholar
  70. Staněk M., Géraud Y., Lexa O., Špaček P., Ulrich S. and Diraison M., 2013. Elastic anisotropy and pore space geometry of schlieren granite: direct 3-D measurements at high confining pressure combined with microfabric analysis. Geophys. J. Int., 194, 383–394.CrossRefGoogle Scholar
  71. Štemprok M., 1987. Greisenization (a review). Geol. Rundsch., 76, 169–175.CrossRefGoogle Scholar
  72. Štemprok M., Chlupáčová M., Pivec E., Novák J.K. and Lang M., 1997. Petrochemical and petrophysical changes caused by greisenization in the younger granites of the Krušné hory Batholith (Czech Republic). In: Papunen H. (Ed.), Mineral Deposits. Balkema, Rotterdam, The Netherlands, 679–682.Google Scholar
  73. Surma F. and Geraud Y., 2003. Porosity and thermal conductivity of the Soultz-sous-Forêts granite. Pure Appl. Geophys., 160, 1125–1136.CrossRefGoogle Scholar
  74. Tarling D.H. and Hrouda F., 1993. The Magnetic Anisotropy of Rocks. Chapman and Hall, London, U.K.Google Scholar
  75. Veksler I.V., Dorfman A.M., Kamenetsky M., Dulski P. and Dingwell D.B., 2005. Partitioning of lanthanides and Y between immiscible silicate and fluoride melts, fluorite and cryolite and the origin of the lanthanide tetrad effect in igneous rocks. Geochim. Cosmochim. Acta, 69, 2847–2860.CrossRefGoogle Scholar
  76. Vigneresse J.L., 2004. A new paradigm for granite generation. Trans. R. Soc. Edinb. Earth Sci., 95, 11–22.CrossRefGoogle Scholar
  77. Villaseca C., Barbero L. and Herreros V., 1998. A re-examination of the typology of peraluminous granite types in intracontinental orogenic belts. Trans. R. Soc. Edinb. Earth Sci., 89, 113–119.CrossRefGoogle Scholar
  78. Wardlaw N.C., Li Y. and Forbes D., 1987. Porethroat size correlation from capillary pressures curves. Transp. Porous Media, 2, 597–614.CrossRefGoogle Scholar
  79. Washburn E.W. 1921. Note on a method of determining the distribution of pore sizes in a porous material. Proc. Natl. Acad. Sci. U. S. A., 7, 115–116.CrossRefGoogle Scholar
  80. Webster J., Thomas R., Forster H., Seltmann R. and Tappen C., 2004. Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Miner. Depos., 39, 452–472.CrossRefGoogle Scholar
  81. Witt W.K., 1988. Evolution of high-temperature hydrothermal fluids associated with greisenization and feldspathic alteration of a tin-mineralized granite, Northeast Queensland. Econ. Geol., 83, 310–334.CrossRefGoogle Scholar
  82. Zhao Z.H., Xiong X.L., Hen X.D., Wang Y.X., Qiang W., Bao Z.W. and Jahn B., 2002. Controls on the REE tetrad effect in granites: evidence from the Qianlishan and Baerzhe granites, China. Geochem. J., 36, 527–543.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2013

Authors and Affiliations

  • Matěj Machek
    • 1
  • Zuzana Roxerová
    • 1
  • Vojtěch Janoušek
    • 2
  • Martin Staněk
    • 1
  • Eduard Petrovský
    • 1
  • Miloš René
    • 3
  1. 1.Institute of Geophysics AS CRPraha 4Czech Republic
  2. 2.Czech Geological SurveyPraha 1Czech Republic
  3. 3.Institute of Rock Structure and Mechanics AS CRPraha 8Czech Republic

Personalised recommendations