Studia Geophysica et Geodaetica

, Volume 57, Issue 4, pp 755–770 | Cite as

Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution

  • Eduard Petrovský
  • Radek Zbořil
  • Tomáš Matys Grygar
  • Bohumil Kotlík
  • Jiří Novák
  • Aleš Kapička
  • Hana Grison


Magnetic measurements of deposited atmospehric dust can serve as an additional parameter in assessing environmental pollution. This method is based on the assumption that atmospherically deposited particles contain significant portion of ferrimagnetic iron oxides of anthropogenic origin, which can be easily detected. Aim of this paper is to identify clearly magnetic fraction of daily samples of particulate matter less than 10 μm (PM10), routinely used for air quality assessment and monitoring. We used combination of thermomagnetic analyses and other physical and chemical methods, including scanning electron microscopy (SEM) and Mössbauer spectroscopy. Our results show that daily samples of PM10, collected at sites with different degree of atmospheric pollution, contain magnetite of spherical shape, which is presumably of industrial origin. Thus, magnetic methods can be applied directly to the same substances, which are used routinely in air quality assessment and monitoring.


magnetite atmospheric dust pollution rock magnetism 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aguilar Reyes B., Cejudo Ruiz R., Martínez-Cruz J., Bautista F., Goguitchaichvili A., Carvallo C. and Morales J., 2012. Ficus benjamina leaves as indicator of atmospheric pollution: a reconaissance study. Stud. Geophys. Geod., 56, 879–887, DOI: 10.1007/s11200-011-0265-1.CrossRefGoogle Scholar
  2. Blaha U., Sapkota B., Appel E., Stanjek H. and Rösler W., 2008. Micro-scale grain-size analysis and magnetic properties of coal-fired power plant fly ash and its relevance for environmental magnetic pollution studies. Atmos. Environ., 42, 8359–8370.CrossRefGoogle Scholar
  3. Bućko M.S., Magiera T., Johanson B., Petrovský E. and Pesonen L.J., 2011. Identification of magnetic particulates in road dust accumulated on roadside snow using magnetic, geochemical and micro-morphological analyses. Environ. Pollut., 159, 1266–1276, DOI: 10.1016/j.envpol.2011.01.030.CrossRefGoogle Scholar
  4. Čapek L., Kreibich V., Dědeček J., Grygar T., Wichterlová B., Sobalík Z., Martens J.A., Brosius R. and Tokarová V., 2005. Analysis of Fe species in zeolites by UV-VIS-NIR, IR spectra and voltammetry. Effect of preparation, Fe loading and zeolite type. Micropor. Mesopor. Mater., 80, 279–289.Google Scholar
  5. Chester R., Sharples E.J., Sanders G.S., Oldfield F. and Saydam A.C., 1984. The distribution of natural and non-crustal ferrimagnetic minerals in soil-sized particulates from the Mediterranean atmosphere. Water Air Soil Pollut., 23, 25–36.CrossRefGoogle Scholar
  6. CHMI, 2007. Air Pollution Data. Annual Report, Czech Hydrometeorological Institue, Prague, Czech Republic, Scholar
  7. Cornell R.M. and Schwertmann U., 2003. The Iron Oxides, Structure, Properties, Reactions, Occurrences and Use. 2nd Edition. Wiley-VCH, 152–160.Google Scholar
  8. Davila A.F., Rey D., Mohamed K., Rubio B. and Guerra A.P., 2006. Mapping the sources of urban dust in a coastal environment by measuring magnetic parameters of Platanus hispanica leaves. Environ. Sci. Technol., 40, 3922–3928.CrossRefGoogle Scholar
  9. Dvorská A., Lammel G., Klánová J. and Holoubek I., 2008. Kosetice, Czech Republic — ten years of air pollution monitoring and four years of evaluating the origin of persistent organic pollutants. Environ. Pollut., 156, 403–408.CrossRefGoogle Scholar
  10. Fialová H., Maier G., Petrovský E., Kapička A., Boyko T., Scholger R. and MAGPROX Team, 2006. Magnetic properties of soils from sites with different geological and environmental settings. J. Appl. Geophys., 59, 273–283.CrossRefGoogle Scholar
  11. Flanders P.J., 1994. Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931–5936.CrossRefGoogle Scholar
  12. Flanders P.J., 1999. Identifying fly ash at a distance from fossil fuel power stations. Environ. Sci. Technol., 33, 528–532.CrossRefGoogle Scholar
  13. Gautam P., Blaha U. and Appel E., 2005. Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-relatedheavy metal pollution in Kathmandu city, Nepal. Atmos. Environ., 39, 2201–2211.CrossRefGoogle Scholar
  14. Górka-Kostrubiec B., Król E. and Jeleńska M., 2012. Dependence of air pollution on meteorological conditions based on magnetic susceptibility measurements: a case study from Warsaw. Stud. Geophys. Geod., 56, 861–877, DOI: 10.1007/s11200-010-9094-x.CrossRefGoogle Scholar
  15. Grygar T., Bezdička P., Hradil D., Doménech-Carbó A, Marken F., Pikna L. and Cepriá G., 2002. Voltammetric analysis of iron oxide pigments. Analyst, 127, 1100–1107.CrossRefGoogle Scholar
  16. Hanesch M., Scholger R. and Rey D., 2003. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmos. Environ., 37, 5125–5133.CrossRefGoogle Scholar
  17. Hrouda F., 1994. A technique for the measurement of thermal-changes of magnetic-susceptibility of weakly magnetic rocks by the CS-2 apparatus and KLY-2 kappabridge. Geophys. J. Int., 118, 604–612.CrossRefGoogle Scholar
  18. Hunt A., 1986. The application of mineral magnetic methods to atmospheric aerosol discrimination. Phys. Earth Planet. Inter., 42, 10–21.CrossRefGoogle Scholar
  19. Kapička A., Jordanova N., Petrovský E. and Podrázský V., 2003. Magnetic study of weakly contaminated forest soils. Water Air Soil Pollut., 148, 31–44.CrossRefGoogle Scholar
  20. Kapička A., Jordanova N., Petrovský E. and Ustjak S., 2001. Effect of different soil conditions on magnetic parameters of power-plant fly ashes. J. Appl. Geophys., 48, 93–102.CrossRefGoogle Scholar
  21. Kim W., Doh S.J., Yu Y., 2009. Anthropogenic contribution of magnetic particulates in urban roadside dust. Atmos. Environ., 43, 3137–3144.CrossRefGoogle Scholar
  22. Kim W., Doha S.J., Park Z.H. and Yun S.T., 2007. Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmos. Environ., 41, 7627–7641.CrossRefGoogle Scholar
  23. Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett., 189, 269–276.CrossRefGoogle Scholar
  24. Kukier U., Ishak C.F., Sumner M.E. and Miller W.P., 2003. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut., 123, 255–266.CrossRefGoogle Scholar
  25. Lecoanet H., Leveque F. and Ambrosi J.P., 2003. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France). Environ. Pollut., 122, 229–234.CrossRefGoogle Scholar
  26. Lehndorff E., Urbat M. and Schwark L., 2006. Accumulation histories of magnetic particles on pine needles as function of air quality. Atmos. Environ., 40, 7082–7096.CrossRefGoogle Scholar
  27. Maher B., Moore C. and Matyka J., 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ., 42, 364–373.CrossRefGoogle Scholar
  28. Mang C. and Kontny A., 2013. Origin of two Verwey transitions in different generations of magnetite from the Chesapeake Bay impact structure, USA. J. Geophys. Res. (in print).Google Scholar
  29. Matzka J. and Maher B.A., 2002. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmos. Environ., 33, 4565–4569.CrossRefGoogle Scholar
  30. McIntosh G., Gomez-Paccard M. and Osete M.L., 2007. The magnetic properties of particles deposited on Platanus x hispanica leaves in Madrid, Spain, and their temporal and spatial variations. Sci. Tot. Environ., 382, 135–146.CrossRefGoogle Scholar
  31. Moreno E., Sagnotti L., Dinares-Turell J., Winkler A. and Cascella A., 2003. Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmos. Environ., 37, 2967–2977.CrossRefGoogle Scholar
  32. Mugica V., Maubert M., Torres M., Munoz J. and Rico E., 2002. Temporal and spatial variations of metal content in TSP and PM10 in Mexico City during 1996–1998. J. Aerosol. Sci., 33, 91–102.CrossRefGoogle Scholar
  33. Muxworthy A.R., Matzka J., Davila A.F. and Petersen N., 2003. Magnetic signature of daily sampled urban atmospheric particles. Atmos. Environ., 37, 4163–4169.CrossRefGoogle Scholar
  34. Oldfield F., Hunt A., Jones M.D.H., Chester L., Dearing J.A., Olsson L. and Prospero J.M., 1985. Magnetic differentiation of atmospheric dusts. Nature, 317, 516–518.CrossRefGoogle Scholar
  35. Petrovský E. and Kapička A., 2006. On determination of the Curie point from thermomagnetic curves. J. Geophys. Res., 111, B12S27, DOI: 10.1029/2006JB004507.CrossRefGoogle Scholar
  36. Protonotarios V., Petsas N. and Moutsatsou A., 2002. Levels and composition of atmospheric particulates (PM10) in a mining-industrial site in the city of Lavrion, Greece. J. Air. Waste Manag. Assoc., 52, 11263–1273.Google Scholar
  37. Sagnotti L., Macri P., Egli R. and Mondino M., 2006. Magnetic properties of atmospheric particulate matter from automatic air sampler stations in Latium (Italy): Toward a definition of magnetic fingerprints for natural and anthropogenic PM10 sources. J. Geophys. Res., 111, B12S22, DOI: 10.1029/2006JB004508.CrossRefGoogle Scholar
  38. Sagnotti L., Taddeucci J., Winkler A. and Cavallo A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst., 10, Q08Z06, DOI: 10.1029/2009GC002563.CrossRefGoogle Scholar
  39. Salo H., Bućko M.S., Vaahtovuo E., Limo J., Mäkinen J. and Pesonen L.J., 2012. Biomonitoring of air pollution in SW Finland by magnetic and chemical measurements of moss bags and lichens. J. Geochem. Explor., 115, 69–81, DOI: 10.1016/j.gexplo.2012.02.009.CrossRefGoogle Scholar
  40. Samet J.M., Dominici F., Curriero F.C., Coursac I. and Zeger S.L., 2000. Fine particulate air pollution and mortality in 20 US Cities, 1987–1994. N. Eng. J. Med., 343, 1742–1749.CrossRefGoogle Scholar
  41. Shu J., Dearing J.A., Morse A.P., Yu L. and Yuan N., 2001. Determining the sources of atmospheric particles in Shanghai, China, from magnetic and geochemical properties. Atmos. Environ., 35, 2615–2625.CrossRefGoogle Scholar
  42. Scholz F., Schröder U. and Gulaboski R., 2005. Electrochemistry of Immobilized Particles and Droplets. Springer. Heidelberg, Berlin, Germanz, XIII, 290 pp., ISBN: 3-540-22005-4.Google Scholar
  43. Strzyszcz Z., Magiera T. and Heller F., 1996. The influence of industrial imissions on the magnetic susceptibility of soils in Upper Silesia. Stud. Geophys. Geod., 40, 276–286.CrossRefGoogle Scholar
  44. Urbat M., Lehndorff E. and Schwark L., 2004. Biomonitoring of air quality in the Cologne conurbation using pine needles as a passive sampler — Part I: magnetic properties. Atmos. Environ., 38, 3781–3792.CrossRefGoogle Scholar
  45. Xia D.S., Chen F.H., Bloemendal J., Liu X.M., Yu Y. and Yang L.P., 2008. Magnetic properties of urban dustfall in Lanzhou, China, and its environmental implications. Atmos. Environ., 42, 2198–2207.CrossRefGoogle Scholar
  46. Zhang C., Huang B., Li Y. and Liu H., 2006. Magnetic properties of high-road-side pine tree leaves in Beijing and their environ-mental significance. Chinese Sci. Bull., 51, 3041–3052, DOI: 10.1007/s11434-006-2189-7.CrossRefGoogle Scholar
  47. Zhang C., Huang B., Piper J.D.A. and Luo R., 2008. Biomonitoring of atmospheric particulate matter using magnetic properties of Salix matsudana tree ring cores. Sci. Tot. Environ., 93, 177–190, DOI: 10.1016/j.scitotenv.2007.12.032.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2013

Authors and Affiliations

  • Eduard Petrovský
    • 1
  • Radek Zbořil
    • 2
  • Tomáš Matys Grygar
    • 3
  • Bohumil Kotlík
    • 4
  • Jiří Novák
    • 5
  • Aleš Kapička
    • 1
  • Hana Grison
    • 1
  1. 1.Institute of Geophysics AS CR v.v.i.Praha 4Czech Republic
  2. 2.Regional Centre of Advanced Technologies and Materials, Department of Physical ChemistryPalacký UniversityOlomoucCzech Republic
  3. 3.Institute of Inorganic Chemistry AS CR v.v.i.ŘežCzech Republic
  4. 4.National Institute of Public HealthPraha 10Czech Republic
  5. 5.Czech Hydrometeorological InstitutePraha 4Czech Republic

Personalised recommendations