Advertisement

Studia Geophysica et Geodaetica

, Volume 57, Issue 2, pp 155–173 | Cite as

Impact of GOCE Level 1b data reprocessing on GOCE-only and combined gravity field models

  • Roland Pail
  • Thomas Fecher
  • Michael Murböck
  • Moritz Rexer
  • Monika Stetter
  • Thomas Gruber
  • Claudia Stummer
Article

Abstract

The reprocessing of Gravity field and steady-state Ocean Circulation Explorer (GOCE) Level 1b gradiometer and star tracker data applying upgraded processing methods leads to improved gravity gradient and attitude products. The impact of these enhanced products on GOCE-only and combined GOCE+GRACE (Gravity Recovery and Climate Experiment) gravity field models is analyzed in detail, based on a two-months data period of Nov. and Dec. 2009, and applying a rigorous gravity field solution of full normal equations. Gravity field models that are based only on GOCE gradiometer data benefit most, especially in the low to medium degree range of the harmonic spectrum, but also for specific groups of harmonic coefficients around order 16 and its integer multiples, related to the satellite’s revolution frequency. However, due to the fact that also (near-)sectorial coefficients are significantly improved up to high degrees (which is caused mainly by an enhanced second derivative in Y direction of the gravitational potential — VYY), also combined gravity field models, including either GOCE orbit information or GRACE data, show improvements of more than 10% compared to the use of original gravity gradient data. Finally, the resulting gradiometry-only, GOCE-only and GOCE+GRACE global gravity field models have been externally validated by independent GPS/levelling observations in selected regions. In conclusion, it can be expected that several applications will benefit from the better quality of data and resulting GOCE and combined gravity field models.

Keywords

gravity field GOCE gradiometry Level 1b processing spherical harmonics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Braitenberg C., Pivetta T. and Li Y., 2012. The youngest generation GOCE products in unraveling the mysteries of the crust of North-Central Africa. Geophys. Res. Abs., 14, EGU2012–6022.Google Scholar
  2. Broerse T., Visser P., Bouman J., Fuchs M., Vermeersen B. and Schmidt M., 2011. Modelling and observing the 8.8 Chile and 9.0 Japan earthquakes using GOCE. In: Ouwehand L. (Ed.), Proceedings of 4th International GOCE User Workshop. ESA-SP 696, European Space Agency, Noordwijk, The Netherlands, ISBN: 978-92-9092-260-5.Google Scholar
  3. Box G.E.P., Jenkins G.M. and Reinsel G.C., 2008. Time Series Analysis, Forecasting and Control. 4th Edition. Wiley Publications, Hoboken, New Jersey.Google Scholar
  4. Bruinsma S.L., Marty J.C., Balmino G., Biancale R., Förste C., Abrikosov O. and Neumeyer H., 2010. GOCE gravity field recovery by means of the direct numerical method. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6.Google Scholar
  5. Drinkwater M.R., Floberghagen R., Haagmans R., Muzi D. and Popescu A., 2003. GOCE: ESA’s first Earth Explorer Core mission. In: Beutler G., Drinkwater M.R., Rummel R. and von Steiger R. (Eds.), Earth Gravity Field from Space — from Sensors to Earth Sciences. Space Sciences Series of ISSI, 17, 419–432, Kluwer Academic Publishers, Dordrecht, The Netherlands, ISBN: 1-4020-1408-2.CrossRefGoogle Scholar
  6. Förste C., Bruinsma S., Shako R., Marty J.C., Flechtner F., Abrikosov O., Dahle C., Lemoine J.M., Neumayer K.H., Biancale R., Barthelmes F., König R. and Balmino G., 2011. EIGEN-6 — A new combined global gravity field model including GOCE data from the collaboration of GFZ-Potsdam and GRGS-Toulouse. Geophys. Res. Abs., 13, EGU2011–3242-2.Google Scholar
  7. Goiginger H., Rieser D., Mayer-Guerr T., Pail R., Fecher T., Gruber T., Albertella A., Maier A., Höck E., Krauss S., Hausleitner W., Baur O., Jäggi A., Meyer U., Brockman J.M., Schuh W.-D., Krasbutter I. and Kusche J., 2011. The satellite-only global gravity field model GOCO02S. Geophys. Res. Abs., 13, EGU2011–10571 (http://www.goco.eu/data/egu2011-10571-goco02s.pdf).Google Scholar
  8. Gruber T., Rummel R., Abrikosov O. and van Hees R. (Eds.), 2012. GOCE Level 2 Product Data Handbook. GO-MA-HPF-GS-0110, Issue 4, Revision 3. European Space Agency, Noordwijk, The Netherlands (https://earth.esa.int/c/document_library/get_file?folderId=14168&name=DLFE-591.pdf).Google Scholar
  9. Gruber T., Visser P.N.A.M., Ackermann C. and Hosse M., 2011. Validation of GOCE gravity field models by means of orbit residuals and geoid comparisons. J. Geodesy, 85, 845–860, DOI: 10.1007/s00190-011-0486-7.CrossRefGoogle Scholar
  10. Hosse M., Pail R., Horwath M., Mahatsente R., Götze H., Jahr T., Jentzsch M., Gutknecht B.D., Köther N., Lücke O., Sharma R. and Zeumann S., 2011. Integrated modeling of satellite gravity data of active plate margins — bridging the gap between geodesy and geophysics. Abstract G43A-0752 Poster, presented at AGU Fall Meeting 2011, San Francisco, 08.12.2011.Google Scholar
  11. Kargoll B., 2007. On the Theory and Application of Model Misspecification Tests in Geodesy. PhD Thesis, University of Bonn, Germany (http://hss.ulb.uni-bonn.de/2007/1113/1113.pdf).Google Scholar
  12. Klees R., Ditmar P. and Broersen P., 2003. How to handle colored observation noise in large leastsquares problems. J. Geodesy, 76, 629–640, DOI: 10.1007/s00190-002-0291-4.CrossRefGoogle Scholar
  13. Koch K.H. and Kusche J., 2002. Regularization of geopotential determination from satellite data by variance components. J. Geodesy, 76, 259–268, DOI: 10.1007/s00190-002-0245-x.CrossRefGoogle Scholar
  14. Lackner B., 2006. Data Inspection and Hypothesis Tests of Very Long Time Series Applied to GOCE Satellite Gravity Gradiometry Data. PhD Thesis, TU Graz, Austria, 187 pp.Google Scholar
  15. Mayer-Gürr T., Kurtenbach E. and Eicker A., 2010. The Satellite-Only Gravity Field Model ITGGrace2010s (http://www.igg.uni-bonn.de/apmg/index.php?id=itg-grace2010).
  16. Mayrhofer R., Pail R. and Fecher T., 2010. Quick-look gravity field solutions as part of the GOCE quality assessment. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6 (https://online.tugraz.at/tug_online/voe_main2.getvolltext?pCurrPk=55603).Google Scholar
  17. Migliaccio F., Reguzzoni M., Sansó F., Tscherning C.C. and Veicherts M., 2010. GOCE data analysis: the space-wise approach and the first space-wise gravity field model. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6 (http://www.cct.gfy.ku.dk/publ_cct/cct2009.pdf).Google Scholar
  18. Oppenheim A.V. and Schafer R.W., 1989. Discrete-Time Signal Processing. Englewood Cliffs, Prentice Hall, NJ.Google Scholar
  19. Pail R., Bruinsma S., Migliaccio F., Förste C., Goiginger H., Schuh W.-D, Höck E., Reguzzoni M., Brockmann J.M., Abrikosov O., Veicherts M., Fecher T., Mayrhofer R., Krasbutter I., Sansó F. and Tscherning, C.C., 2011. First GOCE gravity field models derived by three different approaches. J. Geodesy, 85, 819–843, DOI: 10.1007/s00190-011-0467-x.CrossRefGoogle Scholar
  20. Pail R., Metzler B., Preimesberger T., Lackner B. and Wermuth M., 2007. GOCE Quick-look gravity field analysis in the framework of HPF. In: Fletcher K. (Ed.), 3rd Int. GOCE User Workshop. ESA SP-627, 325–332, European Space Agency, Noordwijk, The Netherlands, ISBN: 92-9092-938-3.Google Scholar
  21. Pail R., Goiginger H., Mayrhofer R., Schuh W.-D., Brockmann J.M., Krasbutter I., Höck E. and Fecher T., 2010a. GOCE global gravity field model derived from orbit and gradiometry data applying the time-wise method. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6 (www.espace-tum.de/mediadb/910370/910371/pail10.pdf).Google Scholar
  22. Pail R., Goiginger H., Schuh W.-D., Höck E., Brockmann J.M., Fecher T., Gruber T., Mayer-Gürr T., Kusche J., Jäggi A. and Rieser D., 2010b. Combined satellite gravity field model GOCO01S derived from GOCE and GRACE. Geophys. Res. Lett., 37, L20314, DOI: 10.1029/2010GL044906.CrossRefGoogle Scholar
  23. Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). J. Geophys. Res., 117, B04406, DOI: 10.1029/2011JB008916.CrossRefGoogle Scholar
  24. Reigber Ch., Balmino G., Schwintzer P., Biancale R., Bode A., Lemoine J.M., Koenig R., Loyer S., Neumayer H., Marty J.C., Barthelmes F. and Perosanz F., 2002. A high quality global gravity field model from CHAMP GPS tracking data and accelerometry (EIGEN-1S). Geophys. Res. Lett., 29, 1692, DOI: 10.1029/2002GL015064.CrossRefGoogle Scholar
  25. Rummel R., Gruber T. and Koop R., 2004. High level processing facility for GOCE: products and processing strategy. In: H. Lacoste (Ed.), 2nd International GOCE User Workshop: GOCE, the Geoid and Oceanography. ESA SP-569, European Space Agency, Noordwijk, The Netherlands, ISBN (Print) 92-9092-880-8, ISSN 1609-042X (http://earth.esa.int/goce04/goce_proceedings/04_rummel.pdf).Google Scholar
  26. Rummel R., Yi W. and Stummer C., 2011. GOCE gravitational gradiometry. J. Geodesy, 85, 777–790.CrossRefGoogle Scholar
  27. Schuh W.-D., 1996. Tailored Numerical Solution Strategies for the Global Determination of the Earth’s Gravity Field. Mitteilungen Geod. Inst. TU Graz 81, Graz University of Technology, Graz, Austria.Google Scholar
  28. Schuh W.-D., Brockmann J.M., Kargoll B., Krasbutter I. and Pail R., 2010. Refinement of the stochastic model of GOCE scientific data and its effect on the in-situ gravity field solution. In: Lacoste-Francis H. (Ed.), Proceedings of ESA Living Planet Symposium. ESA SP-686, European Space Agency, Noordwijk, The Netherlands, ISBN 978-92-9221-250-6.Google Scholar
  29. Siemes C., 2008. Digital Filtering Algorithms — Tools for Decorrelation within Large Least Squares Problems in the Context of Satellite Gravity Gradiometry. PhD Thesis, University of Bonn, Germany (http://hss.ulb.uni-bonn.de/2008/1374/1374.pdf).Google Scholar
  30. Sneeuw N., 2000. A semi-analytical approach to gravity field analysis from satellite observations. DGK Series C, No. 527, Verlag der Bayerischen Akademie der Wissenschaften, ISBN (Print) 3-7696-9566-6, ISSN 0065-5325.Google Scholar
  31. Sneeuw N. and van Gelderen M., 1997. The polar gap. In: Sansò F. and Rummel R. (Eds.), Geodetic Boundary Value Problems in View of the One Centimeter Geoid. Lecture Notes in Earth Sciences, 65, Springer-Verlag, Berlin, Germany, 559–568, DOI: 10.1007/BFb0011699.CrossRefGoogle Scholar
  32. Stummer C., Fecher T. and Pail R., 2011. Alternative method for angular rate determination within the GOCE gradiometer processing. J. Geodesy, 85, 585–596.CrossRefGoogle Scholar
  33. Stummer C., Siemes C., Pail R., Frommknecht B. and Floberghagen R., 2012. Upgrade of the GOCE Level 1b gradiometer processor. Adv. Space Res., 49, 739–752.CrossRefGoogle Scholar
  34. Tapley B.D., Bettadpur S., Watkins M. and Reigber C., 2004. The gravity recovery and climate experiment: Mission overview and early results. Geophys. Res. Lett., 31, L09607, DOI: 10.1029/2004GL019920.CrossRefGoogle Scholar
  35. Welch P.D., 1967. The use of fast Fourier transforms for the estimation of power spectra: A method based on time averaging over short modified periodograms. IEEE Trans. Audio Electroacoust., 15, 70–73.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2013

Authors and Affiliations

  • Roland Pail
    • 1
  • Thomas Fecher
    • 1
  • Michael Murböck
    • 1
  • Moritz Rexer
    • 1
  • Monika Stetter
    • 1
  • Thomas Gruber
    • 1
  • Claudia Stummer
    • 1
  1. 1.TU München, Institute of Astronomical and Physical Geodesy (IAPG)MunichGermany

Personalised recommendations