Advertisement

Studia Geophysica et Geodaetica

, Volume 57, Issue 4, pp 605–626 | Cite as

Archeointensity investigation on pottery vestiges from Puertas de Rolón, Capacha culture: In search for affinity with other Mesoamerican pre-Hispanic cultures

  • Juan MoralesEmail author
  • Avto Goguitchaichvili
  • María de los Ángeles Olay Barrientos
  • Claire Carvallo
  • Bertha Aguilar Reyes
Article

Abstract

We report the results of a rock magnetic and archeointensity study on pottery fragments recovered at the archaeological site of Puertas de Rolón, Capacha culture (Colima), that is considered one of the most important pre-Classic cultural developments of western Mesoamerica, Mexico. Standard rock magnetic experiments were carried out in order to investigate the reliability of the ancient field strength recovered from studied materials. Six out of the seven analyzed fragments gave reliable intensity determinations. The mean archeointensity value obtained in this study is 35.3 ± 3.4 μT. It is in good agreement with another contemporaneous Mesoamerican mean archeointensity of 34.3 ± 1.1 μT obtained for El Opeño. Statistically similar rock-magnetic parameters between ceramics from El Opeño and Puertas de Rolón potsherds appear to be related to clay-sources with similar geological settings and weathering processes. Alternatively, ancient trade or interexchange between western (Capacha Culture) and eastern Mesoamerica locations, as it has been proposed earlier, seem to be supported by results obtained in this study.

Keywords

Capacha pottery archeointensity Western Mexico 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aitken M.J., 1999. Archaeological dating using physical phenomena. Rep. Prog. Phys., 62, 1333–1376.CrossRefGoogle Scholar
  2. Alva-Valdivia L.M., Morales J., Goguitchaichvili A., Hatch M.P., Hernandez-Bernal M.S. and Mariano-Matías F., 2010. Absolute geomagnetic intensity data from pre-Classic Guatemalan pottery. Phys. Earth Planet. Inter., 180, 41–51.CrossRefGoogle Scholar
  3. Bucha V., Tylor R.E., Berger R. and Haury E.W., 1970. Geomagnetic intensity: Changes during the past 3000 years in the western hemisphere. Science, 168, 111–114.CrossRefGoogle Scholar
  4. Carvallo C., Roberts A., Leonhardt R., Laj C., Kissel C., Perrin M. and Camps P., 2006. Increasing the efficiency of paleointensity analyses by selection of samples using first-order reversal curve (FORC) diagrams. J. Geophys. Res., 111, B12103, DOI: 10.1029/2005JB004126.CrossRefGoogle Scholar
  5. Chauvin A., Garcia A., Lanos Ph. and Laubenheimer F., 2000. Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Phys. Earth Planet. Inter., 120, 111–136.CrossRefGoogle Scholar
  6. Coe R.S., 1967. Paleo-intensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 72, 3247–3262.CrossRefGoogle Scholar
  7. Coe R.S., Grommé S. and Mankinen E.A., 1978. Geomagnetic paleointensities from radiocarbondated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res., 83, 1740–1756.CrossRefGoogle Scholar
  8. Day R., Fuller M. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter., 13, 206–267.Google Scholar
  9. Dunlop D., 2002. Theory and application of the Day plot (Mrs/Ms versus Hcr/Hc) 1. Theoretical curves and tests using titanomagnetite data. J. Geophys. Res., 107, DOI: 10.1029/2001JB000486.Google Scholar
  10. Freestone I.C., 1982. Applications and potential of electron prove micro-analysis in technological and provenance investigations of ancient ceramics. Archaeometry, 24, 99–116.CrossRefGoogle Scholar
  11. Fox J.M.W. and Aitken M.J., 1980.Cooling rate dependence of the thermoremanent magnetization. Nature, 283, 462–463.CrossRefGoogle Scholar
  12. Genevey A. and Gallet Y., 2002. Intensity of the geomagnetic field in western Europe over the past 2000 years: New data from ancient French pottery. J. Geophys. Res., 107(B11), 2285, DOI: 10.1029/2001JB000701.CrossRefGoogle Scholar
  13. Harbottle G., 1975. Activations analysis study of ceramics from the Capacha (Colima) and Opeño (Michoacán) phases of west Mexico. American Antiquity, 40(4), 453–58.CrossRefGoogle Scholar
  14. Johnson A., 2008. Solving Stonehenge, the New Key to an Ancient Enigma. Thames & Hudson, London, U.K., ISBN 978-0-500-05155-9.Google Scholar
  15. Kelly I., 1972. Vasijas de Colima con boca de estribo. Instituto Nacional de Antropología e Historia Boletin, 42, 26–31 (in Spanish).Google Scholar
  16. Kelly I., 1980. Ceramic Sequence in Colima: Capacha, an Early Phase. University of Arizona Press, Tucson.Google Scholar
  17. Korte M. and Constable C.G., 2005. Continuous geomagnetic field models for the past 7 millenia: 2. CALS7K. Geochem. Geophys. Geosyst., 6, Q02H16, DOI: 10.1029/2004GC000801.Google Scholar
  18. Kosterov A. and Prévot M., 1998. Possible mechanism causing failure of Thellier paleointensity experiments in some basalts. Geophys. J. Int., 134, 554–572.CrossRefGoogle Scholar
  19. Leonhardt R., Heunemann C. and Krasa D., 2004. Analyzing absolute paleointensity determinations: Acceptance criteria and the software ThellierTool4.0. Geochem. Geophys. Geosyst., 5, Q12016, DOI: 10.1029/2004GC000807.CrossRefGoogle Scholar
  20. Levi S., 1977. The effect of magnetite particle size on paleointensity determinations of the Geomagnetic Field. Phys. Earth Planet. Inter., 13, 245–259.CrossRefGoogle Scholar
  21. López-Tellez J.M., Aguilar-Reyes B., Morales J., Goguitchaichvili A., Calvo-Rather M. and Urrutia-Fucugauchi J., 2008. Magnetic characteristics and archeointensity determination on some Mesoamerican pre-Columbian potteries: case study of Quiahuiztlan archeological site (Veracruz, Gulf of Mexico, 900–1521 A.D.). Geofísica Internacional, 47(4), 329–340.Google Scholar
  22. McCabe C., Jackson M. and Ellwood B., 1985. Magnetic anisotropy in the Trenton limestone: results of a new technique, anisotropy of anhysteric susceptibility. Geophys. Res. Lett., 12, 333–336.CrossRefGoogle Scholar
  23. McClelland-Brown E., 1984. Experiments on TRM intensity dependence on cooling rate. Geophys. Res. Lett., 11, 205–208.CrossRefGoogle Scholar
  24. Morales J., Goguitchaichvili A. and Urrutia-Fucugauchi J., 2007. Cooling rate effect as a cause of systematic overestimating of the absolute Thellier paleointensities: A cautionary note. Stud. Geophys. Geod., 51, 315–326.CrossRefGoogle Scholar
  25. Morales J., Goguitchaichvili A., Acosta G., González-Morán T., Alva-Valdivia L., Robles-Camacho J. and Hernández-Bernal M.S., 2009. Magnetic properties and archeointensity determination on pre-Columbian pottery from Chiapas, Mesoamerica. Earth Planets Space, 61, 83–91, DOI: 10.19EPS2364.10.29.Google Scholar
  26. Morales J., Goguitchaichvili A., Aguilar-Reyes B., Pineda M., Carvallo C., Baramendi L., Hernandez G. and Oliveros A., 2012. A detailed rock-magnetic and archeointensity investigation on some pottery relics and burned floors from Tzintzuntzan archeological site, Western Mesoamerica. Geoarchaeology, 27, 521–537, DOI: 10.1002/gea.21426.CrossRefGoogle Scholar
  27. Morales J., Goguitchaichvili A., Aguilar-Reyes B., Pineda-Duran M., Camps P., Carvallo C. and Calvo-Rathert M., 2011. Are ceramics and bricks reliable absolute geomagnetic intensity carriers? Phys. Earth Planet. Inter., 187, 310–321.CrossRefGoogle Scholar
  28. Nagata T., Kobayashi K. and Schwarz E.J., 1965. Archeomagnetic intensity studies of South and Central America. J. Geomagn. Geoelectr., 17, 399–405.CrossRefGoogle Scholar
  29. Oliveros J.A., 1970. Excavación de dos tumbas en El Opeño, Michoacán. PhD Thesis, Departamento de Arqueología, Escuela Nacional de Antropología e Historia, México, D.F. (in Spanish).Google Scholar
  30. Ordoñez E., 1892. Algunas obsidianas de México. Mem. Soc. Cientif. Antonio Alzate, 16, 33–43 (in Spanish).Google Scholar
  31. Pavón-Carrasco F. J., Rodríguez-González, J., Osete, M. L. and Torta, J. M., 2011. A Matlab tool for archaeomagnetic dating. Journal of Archaeological Science 38, 408–419.CrossRefGoogle Scholar
  32. Pineda-Duran M., Gogichaisvili A., Morales J., Aguilar Reyes B., Oliveros-Morales A., Calvo-Rathert M. and Robles-Camacho J., 2010. Archaeointensity of Earth’s magnetic field recovered from El Opeño, earliest funeral architecture known in Western Mesoamerica. Stud. Geophys. Geod., 54, 575–593.CrossRefGoogle Scholar
  33. Qiang X., An Z., Li H., Chang H. and Song Y., 2005. Magnetic properties of Jiaxian red clay sequences from northern Chinese Loess Plateau and its paleoclimatic significance. Science in China Series D: Earth Sciences, 48, 1234–1245.CrossRefGoogle Scholar
  34. Riisager P. and Riisager J., 2001. Detecting multidomain magnetic grains in Thellier palaeointensity experiments. Phys. Earth Planet. Inter., 125, 111–117.CrossRefGoogle Scholar
  35. Roberts A.P., Pike C.R. and Verosub K.L., 2000. FORC diagrams: a new tool for characterizing the magnetic properties of natural samples. J. Geophys. Res., 100, 17909–17924.CrossRefGoogle Scholar
  36. Rojas-Navarrete L.L., 1995. Desarrollo de un vidriado sin plomo de baja temperatura para la alfarería tradicional Mexicana. M.Sc. Thesis, Universidad Autónoma Metropolitana, Unidad Iztapala, Mexico (in Spanish).Google Scholar
  37. Selkin P.A., Gee J.S., Tauxe L., Meurer W.P. and Newell A.J., 2000. The effect of remanence anisotropy on paleointensity estimates: a case study from the Archean Stillwater Complex. Earth Planet. Sci. Lett., 183, 403–416.CrossRefGoogle Scholar
  38. Shepard A.O., 1936. The Pottery of Pecos, Vol. 2. Papers of the Phillips Academy Southwestern Expedition No. 7, Yale University Press, New Haven.Google Scholar
  39. Tauxe L., Mullender T.A.T. and Pick T., 1996. Pot-bellies, wasp-waists and superparamagnetism in magnetic hysteresis. J. Geophys. Res., 95, 12337–12350.CrossRefGoogle Scholar
  40. Tema E., Gómez-Paccard M., Kondopoulou D. and Ylenia A., 2012. Intensity of the Earth’s magnetic field in Greece during the last five millennia: new data from Greek pottery. Phys. Earth Planet. Inter., 202, 14–26.CrossRefGoogle Scholar
  41. Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Géophysique, 15, 285–376 (in French).Google Scholar
  42. Thomas H., 1923. The source of the stones of Stonehenge. Antiquaries Journal, 3, 239–260.CrossRefGoogle Scholar
  43. Verma S.P., 2005. Estadística básica para el manejo de datos experimentales: Aplicaciones en la geoquímica (geoquimiometría). Universidad Nacional Autónoma de México, México, D. F., 186 pp. (in Spanish).Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2013

Authors and Affiliations

  • Juan Morales
    • 1
    Email author
  • Avto Goguitchaichvili
    • 1
  • María de los Ángeles Olay Barrientos
    • 2
  • Claire Carvallo
    • 3
  • Bertha Aguilar Reyes
    • 1
  1. 1.Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica, Unidad MichoacánUniversidad Nacional Autónoma de MéxicoMichoacanMexico
  2. 2.Centro INAHColimaMexico
  3. 3.Institut de Minéralogie et de Physique des Milieux CondensésUniversité Pierre et Marie CurieParisFrance

Personalised recommendations