Studia Geophysica et Geodaetica

, Volume 56, Issue 4, pp 1019–1036 | Cite as

Imaging the Mariánské Lázně Fault (Czech Republic) by 3-D ground-penetrating radar and electric resistivity tomography

  • Tomáš Fischer
  • Petra Štěpančíková
  • Magda Karousová
  • Petr Tábořík
  • Christina Flechsig
  • Mahmoud Gaballah
Regular Paper

Abstract

Geodynamic activity in the area of West Bohemia is typified by the occurrence of earthquake swarms, Quaternary volcanism and high flux of mantle-derived CO2. The highest swarm activity occurs beneath the eastern edge of the Cheb basin, which is delineated by the NW-SE trending morphologically pronounced Mariánské Lázně Fault (MLF) controlling the formation of the basin. The previous trenching survey across the MLF zone has identified several fault strands with possible Quaternary activity. In this paper we present the results of the geophysical survey focused to trace the faults signatures in geophysical sections and to build an image of near surface tectonics. The method of electric resistivity tomography (ERT) along two profiles parallel to the trench identified a strong resistivity contrast between the bodies of sandy gravels in the middle and conductive clayey sands to the west and weathered crystalline basement to the east. The 2-D ground penetration radar (GPR) sections show direct correlation of reflections with lithological boundaries identified in the trench. As expected, the GPR signal amplitudes increase with the resistivities found in the ERT sections. Two of the four faults identified in the trench are indicated in the resistivity and GPR sections. A 3-D GPR measurement has identified a spot of high amplitudes elongated parallel to the MLF trend, which coincides with the high resistivity body. To improve the signal-to-noise ratio of the time slices we stacked the GPR time slices within vertically homogeneous blocks. This provided a contrast image of the sand-gravel body including its boundaries in three dimensions. The detailed analysis of the 3-D GPR cube revealed additional fault that limits the highly reflective sands and appears to be offset by another younger fault. Our results suggest a complex fault pattern in the studied area, which deserves a further study.

Keywords

fault tectonics resistivity tomography ground penetrating radar 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bankwitz P., Schneider G., Kämpf H. and Bankwitz E., 2003. Structural characteristics of epicentral areas in Central Europe: study case Cheb Basin (Czech Republic). J. Geodyn., 35, 5–32.CrossRefGoogle Scholar
  2. Cassidy N.J., 2009. Electrical and magnetic properties of rocks, soils and fluids. In: Jol H.M. (Ed.), Ground Penetrating Radar: Theory and Applications. Elsevier B.V., Amsterdam, The Netherlands, 41–72, ISBN: 978-0-444-53348-7.CrossRefGoogle Scholar
  3. Chow J., Angelier J., Hua J.-J., Lee J.-C. and Sun R., 2001. Paleoseismic event and active faulting: from ground penetrating radar and high-resolution seismic reflection profiles across the Chihshang Fault, eastern Taiwan. Tectonophysics, 333, 241–259.CrossRefGoogle Scholar
  4. Dentith M., O’Neill A. and Clark D., 2010. Ground penetrating radar as a means of studying palaeofault scarps in a deeply weathered terrain, southwestern Western Australia. J. Appl. Geophys., 72, 92–101, DOI: 10.1016/j.jappgeo.2010.07.005.CrossRefGoogle Scholar
  5. Fischer T. and Michálek J., 2008. Post 2000-swarm microearthquake activity in the principal focal zone of West Bohemia/Vogtland: space-time distribution and waveform similarity analysis. Stud. Geophys. Geod., 52, 493–511.CrossRefGoogle Scholar
  6. Fischer T., Horálek J., Michálek J. and Boušková A., 2010. The 2008-West Bohemia earthquake swarm in the light of the WEBNET network. J. Seismol., 14, 665–682.CrossRefGoogle Scholar
  7. Flechsig C., Fabig T., Rücker C. and Schütze C., 2010. Geoelectrical investigations in the Cheb Basin/W-Bohemia: an approach to evaluate the near-surface conductivity structure. Stud. Geophys. Geod., 54, 443–463.CrossRefGoogle Scholar
  8. Havíř J., 2000. Stress analyses in the epicentral area of Nový Kostel (Western Bohemia). Stud. Geophys. Geod., 44, 522–536.CrossRefGoogle Scholar
  9. Horálek J. and Fischer T., 2010. Intraplate earthquake swarms in West Bohemia/Vogtland (Central Europe). Jökull, 60, 67–88.Google Scholar
  10. Kämpf H., Peterek A., Rohrmüller J., Kümpel H.J. and Geissler W., 2005. The KTB Deep Crustal Laboratory and the western Eger Graben, In: Koch R. and Röhling H.-G. (Eds.), GeoErlangen 2005: Exkursionsführer, GeoErlangen 2005: System Earth — Biosphere Coupling/Regional Geology of Central Europe (Erlangen 2005). Schriftenreihe der Deutschen Gesellschaft für Geowissenschafte 40, 37–107.Google Scholar
  11. McClymont A.F., Villamor P. and Green A.G., 2009. Fault displacement accumulation and slip rate variability within the Taupo Rift (New Zealand) based on trench and 3-D ground-penetrating radar data. Tectonics, 28, TC4005, DOI: 10.1029/2008TC002334.CrossRefGoogle Scholar
  12. Mlčoch B. and Skácelová Z., 2009. Digital elevation model of the crystalline basement of the Cheb and Sokolov Basin areas (Western Bohemia, Central Europe). Z. Geol. Wiss., 37, 145–152.Google Scholar
  13. Mrlina J., Kämpf H., Kroner C., Mingram J., Stebich M., Brauer A., Geissler W.H., Kallmeyer J., Matthes H. and Seidl M., 2009. Discovery of the first Quaternary maar in the Bohemian Massif, Central Europe, based on combined geophysical and geological surveys. J. Volcanol. Geotherm. Res., 182, 97–112. DOI: 10.1016/j.jvolgeores.2009.01.027.CrossRefGoogle Scholar
  14. Pauseli C., Federico C., Frigeri A., Orosei R., Barchi M.R. and Basile G., 2010. Ground penetrating radar investigations to study active faults in the Norcia Basin (central Italy). J. Appl. Geophys., 72, 39–45.CrossRefGoogle Scholar
  15. Peterek A., Reuther C.D. and Schunk R., 2011. Neotectonic evolution of the Cheb Basin (Northwestern Bohemia, Czech Republic) and its implications for the late Pliocene to Recent crustal deformation in the western part of the Eger Rift. Z. Geol. Wiss., 39, 335–365.Google Scholar
  16. Pitra P., Burg J.P. and Guiraud M, 1999. Late Variscan strike-slip tectonics between the Tepla-Barrandian and Moldanubian terranes (Czech Bohemian Massif): petrostructural evidence. J. Geol. Soc. London, 156, 1003–1020.CrossRefGoogle Scholar
  17. Seht M.I., Plenefisch T. and Schmedes E, 2006. Faulting style and stress field investigations for swarm earthquakes in NE Baveria/Germany - the transition between Vogtland/NW-Bohemia and the KTB-site. J. Seismol., 10, 197–211.CrossRefGoogle Scholar
  18. Špičáková L., Uličný D. and Koudelková G., 2000. Tectonosedimentary evolution of the Cheb Basin (NW Bohemia, Czech Republic) between the Late Oligocene and Pliocene: A preliminary note. Stud. Geophys. Geod., 44, 556–580.CrossRefGoogle Scholar
  19. Štěpančíková P., Hók J., Nývlt D., Dohnal J., Sýkorová I. and Stemberk J., 2010. Active tectonics research using trenching technique on the south-eastern section of the Sudetic Marginal Fault (NE Bohemian Massif, central Europe). Tectonophysics, 485, 269–282.CrossRefGoogle Scholar
  20. Štěpančíková P., Dohnal J., Pánek T., Lój M., Smolková V. and Šilhán K., 2011, The application of electrical resistivity tomography and gravimetric survey as useful tools in an active tectonics study of the Sudetic Marginal Fault (Bohemian Massif, central Europe). J. Appl. Geophys., 74, 69–80.CrossRefGoogle Scholar
  21. Valenta J., Stejskal V. and Štěpančíková P., 2008. Tectonic pattern of the Hronov-Poříčí trough as seen from pole-dipole geoelectrical measurements. Acta Geodyn. Geomater., 5, 185–195.Google Scholar
  22. Vavryčuk V., 2011. Tensile earthquakes: Theory, modeling, and inversion. J. Geophys. Res., 116, B12320, DOI: 10.1029/2011JB008770.CrossRefGoogle Scholar
  23. Weinlich F., Tesař J., Weise S.M., Bräuer K. and Kämpf H., 1998. Gas flux distribution in mineral springs and tectonic structure in the western Eger Rift. J. Czech Geol. Soc., 43, 91–110.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2012

Authors and Affiliations

  • Tomáš Fischer
    • 1
    • 2
  • Petra Štěpančíková
    • 3
  • Magda Karousová
    • 1
  • Petr Tábořík
    • 1
  • Christina Flechsig
    • 4
  • Mahmoud Gaballah
    • 5
  1. 1.Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic
  3. 3.Institute of Rock Structure and MechanicsAcad. Sci. Czech RepublicPraha 8Czech Republic
  4. 4.Institute of Geophysics and GeologyUniversity of LeipzigLeipzigGermany
  5. 5.National Research Institute of Astronomy and GeophysicsHelwan, CairoEgypt

Personalised recommendations