Studia Geophysica et Geodaetica

, Volume 57, Issue 3, pp 460–481 | Cite as

The effects of rheological decoupling on slab deformation in the Earth’s upper mantle

  • Adela Androvičová
  • Hana Čížková
  • Arie van den Berg


Processes within subduction zones have a major influence on the plate dynamics and mantle convection. Subduction is controlled by a combination of many parameters and there is no simple global relationship between the resulting slab geometry and deformation and any specific subduction parameter. In the present work we perform a parametric study of slab dynamics in a two-dimensional model with composite rheology including diffusion creep, dislocation creep and stress limiter or Peierls creep. The mechanical decoupling of the subducting and overriding plates is facilitated by a low viscosity crust. We are particularly interested in the effect of the contact of subducting and overriding plates on the plate geometry in the upper mantle. We also study the influence of the surface boundary condition and of the rheological description (yield stress of stress-limiting rheology, additional viscosity contrast at 660-km discontinuity). Our results demonstrate that the slab morphology and deformation in the upper mantle and the transition zone is sensitive not only to the slab strength, but also to the decoupling mechanism at the contact of the subducting and overriding plates. Weak crust with a viscosity of 1020 Pa s effectively decouples the subducting and overriding plates and produces reasonable slab morphologies. The geometry of the slab in the upper mantle is strongly influenced by the initial geometry of the contact between the subducting and overriding plates. Further, a step-wise viscosity increase by about an order of magnitude at 660 km depth is necessary to limit the plate velocities to a reasonable value around 5 cm/yr.


subduction slab deformation rheology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Auth Ch., Bercovici D. and Christensen U.R., 2003. Two-dimensional convection with a selflubricating, simple-damage rheology. Geophys. J. Int., 154, 783–800.CrossRefGoogle Scholar
  2. Balachandar S., Yuen D.A. and Reuteler D., 1995a. Localization of toroidal motion and shear heating in 3-D high Rayleigh number convection with temperature dependent viscosity. Geophys. Res. Lett., 22, 477–480.CrossRefGoogle Scholar
  3. Balachandar S., Yuen D.A., Reuteler D.M. and Lauer G.S., 1995b. Viscous dissipation in 3-dimensional convection with temperature-dependent viscosity. Science, 267, 1150–1153.CrossRefGoogle Scholar
  4. Běhounková M. and Čížková H., 2008. Long-wavelength character of subducted slabs in the lower mantle. Earth Planet. Sci. Lett., 275, 43–53.CrossRefGoogle Scholar
  5. Bercovici D., 1996. Plate generation in a simple model of lithosphere-mantle flow with dynamic self-lubrication. Earth Planet. Sci. Lett., 144, 41–51.CrossRefGoogle Scholar
  6. Bercovici D., 1998. Generation of plate tectonics from lithosphere-mantle flow and void-volatile self-lubrication. Earth Planet. Sci. Lett., 154, 139–151.CrossRefGoogle Scholar
  7. Bercovici D., Ricard Y. and Richards M., 2000. The relation between mantle dynamics and plate tectonics: A primer. In: Richards M.A., Gordon R. and van der Hilst R. (Eds.), History and Dynamics of Global Plate Motions. Geophysical Monograph Series, 121, American Geophysical Union, Washington, D.C., 5–46.Google Scholar
  8. Bercovici D., Ricard Y. and Schubert G., 2001. A two-phase model of compaction and damage, 3. Applications to shear localization and plate boundary formation. J. Geophys. Res., 106, 8925–8940.CrossRefGoogle Scholar
  9. Bercovici D., 2003. The generation of plate tectonics from mantle convection. Earth Planet. Sci. Lett., 205, 107–121.CrossRefGoogle Scholar
  10. Bercovici D. and Ricard Y., 2003. Energetics of a two phase model of lithospheric damage, shear localization and plate boundary formation. Geophys. J. Int., 152, 1–16.CrossRefGoogle Scholar
  11. Bijwaard H., Spakman W. and Engdahl E.R., 1998. Closing the gap between regional and global travel time tomography. J. Geophys. Res., 103, 30055–30075.CrossRefGoogle Scholar
  12. Billen M.I., 2010. Slab dynamics in the transition zone. Phys. Earth Planet. Inter., 183, 296–308.CrossRefGoogle Scholar
  13. Billen M.I., Gurnis M. and Simons M., 2003. Multiscale dynamic models of the Tonga-Kermadec subduction zone. Geophys. J. Int., 153, 359–388.CrossRefGoogle Scholar
  14. Billen M.I. and Hirth G., 2005. Newtonian versus non-Newtonian upper mantle viscosity: Implications for subduction initiation. Geophys. Res. Lett., 32, L19304, DOI: 10.1029 /2005GL023457.CrossRefGoogle Scholar
  15. Billen M. and Hirth G., 2007. Rheologic controls on slab dynamics. Geochem. Geophys. Geosyst., 8, DOI: 10.1029/2007GC001597.Google Scholar
  16. Bina C. and Helffrich G., 1994. Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. J. Geophys. Res., 103, 15853–15860.CrossRefGoogle Scholar
  17. Chertova M., Geenen T., van den Berg A.P. and Spakman W., 2012. Using open sidewalls for modelling self-consistent lithosphere subduction dynamics. Solid Earth Discuss., 4, 707–744.CrossRefGoogle Scholar
  18. Čížková H., van Hunen J., van den Berg A. P. and Vlaar N.J., 2002. The influence of rheological weakening and yield stress on the interaction of slabs with the 670-km discontinuity. Earth Planet. Sci. Lett., 199, 447–457.CrossRefGoogle Scholar
  19. Čížková H., van Hunen J. and van den Berg A.P., 2007. Stress distribution within subducting slabs and their deformation in the transition zone. Phys. Earth Planet Inter., 161, 202–214.CrossRefGoogle Scholar
  20. Crameri F., Tackley P.J., Meilick I., Gerya T. and Kaus B.J.P., 2012. A free plate surface and weak oceanic crust produce single-sided subduction on Earth. Geophys. Res. Lett., DOI:10.1029 /2011GL050046.Google Scholar
  21. Duretz T., Gerya T.V. and May D.A., 2011. Numerical modelling of spontaneous slab breakoff and subsequent topographic response. Tectonophysics, 502, 244–256.CrossRefGoogle Scholar
  22. Gerya T., Connolly J.A.D. and Yuen D.A., 2008. Why is terrestrial subduction one-sided? Geology, 36, 43–46.CrossRefGoogle Scholar
  23. Gerya T.V. and Meilick F.I., 2011. Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J. Metamorph. Geol., 29, 7–31, DOI: 10.1111/j.1525-1314.2010.00904.x.CrossRefGoogle Scholar
  24. Goes S., Capitanio F.A. and Morra G., 2008. Evidence of lower-mantle slab penetration phases in plate motions. Nature, 451, 981–984.CrossRefGoogle Scholar
  25. Gurnis M., Eloy C. and Zhong S., 1996. Free-surface formulation of mantle convection ii. implication for subduction-zone observables. Geophys. J. Int., 127, 719–727.CrossRefGoogle Scholar
  26. Gurnis M. and Hager B., 1988. Controls on the structure of subducted slabs. Nature, 335, 317–321.CrossRefGoogle Scholar
  27. Han L. and Gurnis M., 1999. How valid are dynamic models of subduction and convection when plate motions are prescribed? Phys. Earth Planet. Inter., 110, 235–246.CrossRefGoogle Scholar
  28. Hilairet N., Reynard B., Wang Y., Daniel I., Merkel S., Nishiyama N. and Petitgirad S., 2007. Highpressure creep of serpentine, interseismic deformation, and initiation of subduction. Science, 318, 1910–1913.CrossRefGoogle Scholar
  29. Hirth G. and Kohlstedt D., 2003. Rheology of the upper mantle and mantle wedge: a view from the experimentalists. In: Eiler J. (Ed.), Inside the Subduction Factory. Geophysical Monograph Series, 138. Americal Geophysical Union, Washington, D.C., 83–105.CrossRefGoogle Scholar
  30. Ita J. and King S.D., 1994. Sensitivity of convection with an endothermic phase change to the form of governing equations, initial conditions, boundary conditions, and equation of state. J. Geophys. Res., 99, 15919–15938.CrossRefGoogle Scholar
  31. Jacobs M.H.G. and van den Berg A.P., 2011. Complex phase distribution and seismic velocity structure of the transition zone: convection model predictions for a magnesium-endmember olivine-pyroxene mantle. Phys. Earth Planet. Inter., 186, 36–48.CrossRefGoogle Scholar
  32. Jadamec M. and Billen M.I., 2010. Reconciling rapid 3-D mantle flow and surface plate motions near the Eastern Alaska slab edge. Nature, 465, 338–341.CrossRefGoogle Scholar
  33. Kameyama M., Yuen D.A. and Karato S.-i., 1999. Thermal-mechanical effects of low-temperature plasticity (the Peierls mechanism) on the deformation of a viscoelastic shear zone. Earth Planet. Sci. Lett., 168, 159–172.CrossRefGoogle Scholar
  34. Karato S.I. and Wu P., 1993. Rheology of the upper mantle: a synthesis. Science, 260, 771–778.CrossRefGoogle Scholar
  35. Kaus B.J.P., Muhlhaus H.-B. and May D.A., 2010. A stabilization algorithm for geodynamic numerical simulations with a free surface. Phys. Earth Planet. Inter., 181, 12–20.CrossRefGoogle Scholar
  36. Kincaid C. and Sacks I.S., 1997. Thermal and dynamical evolution of the upper mantle in subduction zones. J. Geophys. Res., 102(B6), 12295–12315.CrossRefGoogle Scholar
  37. King S.D. and Hager B.H., 1990. The relationship between plate velocity and trench viscosity in Newtonian and power-law subduction calculations. Geophys. Res. Lett., 17, 2409–2412.CrossRefGoogle Scholar
  38. King S. and Hager B., 1994. Subducted slabs and the geoid 1. Numerical experiments with temperature-dependent viscosity. J. Geophys. Res., 99(B10), 19843–19852.CrossRefGoogle Scholar
  39. Kukačka M. and Matyska C., 2004. Influence of the zone of weakness on dip angle and shear heating of subducted slab. Phys. Earth Planet. Inter., 141, 243–252.CrossRefGoogle Scholar
  40. Larsen T., Yuen D.A. and Malevsky A.V., 1995. Dynamical consequences of fast subducting slabs from a self-regulating mechanism due to viscous heating in variable viscosity convection. Geophys. Res. Lett., 22, 1277–1280.CrossRefGoogle Scholar
  41. Larsen T., Yuen D.A., Smedso J.L. and Malevsky A.V., 1996. Thermomechanical modeling of pulsation tectonics and consequences on lithospheric dynamics. Geophys. Res. Lett., 23, 217–220.CrossRefGoogle Scholar
  42. Lee Ch. and King S., 2011. Dynamic buckling of subducting slabs reconciles geological and geophysical observations. Earth Planet. Sci. Lett., 312, 360–370.CrossRefGoogle Scholar
  43. McNamara K., Karato S.I. and van Keken E., 2001. Localization of dislocation creep in the lower mantle: implications for the origin of seismic anisotropy. Earth Planet. Sci. Lett., 191, 85–99.CrossRefGoogle Scholar
  44. Maierová P., Chust T., Steinle-Neumann G., Čadek O. and Čížková H., 2012. The effect of a realistic thermal diffusivity on numerical model of a subducting slab. J. Geophys. Res., 117, B07202, DOI: 10.1029/2011JB009119.CrossRefGoogle Scholar
  45. Moresi L. and Solomatov S., 1998. Mantle convection with a brittle lithosphere: Thoughts on the global tectonic style of the Earth and Venus. Geophys. J., 133, 669–682.CrossRefGoogle Scholar
  46. Quinquis M., Buiter S. and Ellis S., 2011. The role of boundary conditions in numerical models of subduction zone dynamics. Tectonophysics, 497, 57–70.CrossRefGoogle Scholar
  47. Quinteros J., Sobolev S.V. and Popov A.A., 2010. Viscosity in transition zone and lower mantle: Implications for slab penetration. Geophys. Res. Lett., 37, DOI: 10.1029/2010GL043140.Google Scholar
  48. Quinteros J. and Sobolev S., 2012. Constraining kinetics of metastable olivine in the Marianas slab from seismic observations and dynamic models. Tectonophysics, 526–529, 48–55.CrossRefGoogle Scholar
  49. Regeneuer-Lieb K. and Yuen D.A., 2003. Modeling shear zones in geological and planetary sciences: solid- and fluid-thermal-mechanical approaches. Earth. Sci. Rev., 63, 295–349.CrossRefGoogle Scholar
  50. Ricard Y. and Bercovici D., 2003. Two-phase damage theory and crustal rock failure: the theoretical ‘void’ limit and the prediction of experimental data. Geophys. J. Int., 155, 1057–1064.CrossRefGoogle Scholar
  51. Richards M., Yang W.-S., Baumgardner J. and Bunge H.P., 2001. Role of a low-viscosity zone in stabilizing plate tectonics: Implications for comparative terrestrial planetology. Geochem. Geophys. Geosyst., 2000GC000115.Google Scholar
  52. Rolf T. and Tackley P.J., 2011. Focussing of stress by continents in 3D spherical mantle convection with self-consistent plate tectonics. Geophys. Res. Lett., 38, L18301, DOI: 10.1029 /2011GL048677CrossRefGoogle Scholar
  53. Schmeling H., 1989. Compressible convection with constant and variable viscosity: The effect on slab formation geoid and topography. J. Geophys. Res., 94, 12463–12481.CrossRefGoogle Scholar
  54. Segal A. and Praagman N. P., 2005. The Sepran FEM Package. Technical Report. Ingenieurs-Bureau Sepra, The Netherlands ( Scholar
  55. Sizova E., Gerya T., Brown M. and Perchuk L.L., 2010. Subduction styles in the Precambrian: Insight from numerical experiments. Lithos, 116, 209–229, DOI:10.1016/j.lithos.2009.05.028.CrossRefGoogle Scholar
  56. Sobolev S.V. and Babeyko A.Y., 2005. What drives orogeny in the Andes? Geology, 33, 617–620.CrossRefGoogle Scholar
  57. Stein C., Schmalzl J. and Hansen U., 2004. The effect of rheological parameters on plate behaviour in a self-consistent model of mantle convection. Phys. Earth Planet. Inter., 142, 225–255.CrossRefGoogle Scholar
  58. Stein C. and Hansen U., 2008. Plate motions and the viscosity structure of the mantle-insights from numerical modelling. Earth Planet. Sci. Lett., 272, 29–40.CrossRefGoogle Scholar
  59. Steinbach V. and Yuen D.A., 1995. The effects of temperature dependent viscosity on mantle convection with two mantle major phase transitions. Phys. Earth Planet. Inter., 90, 13–36.CrossRefGoogle Scholar
  60. Tackley P.J., 1998. Self-consistent generation of tectonic plates in three-dimensional mantle convection. Earth Planet. Sci. Lett., 157, 9–22.CrossRefGoogle Scholar
  61. Tackley P.J., 2000a. Self-consistent generation of tectonic plates in time-dependent, threedimensional mantle convection simulations, 1. pseudoplastic yielding. Geochem. Geophys. Geosyst., 1, 2000GC000,036.Google Scholar
  62. Tackley P.J., 2000b. Self-consistent generation of tectonic plates in time-dependent, threedimensional mantle convection simulations, 2. strain weakening and astheonosphere. Geochem. Geophys. Geosyst., 1, 2000GC000,043.Google Scholar
  63. Tackley P.J., 2000c. The quest for self-consistent generation of plate tectonics in mantle convection models. In: Richards M.A., Gordon R. and van der Hilst R. (Eds.), History and Dynamics of Global Plate Motions. Geophysical Monograph Series, 121. American Geophysical Union, Washington, D.C., 47–72.Google Scholar
  64. Tackley P.J., 2000d. Mantle convection and plate tectonics: Toward an integrated physical and chemical theory. Science, 288, 2002–2007.CrossRefGoogle Scholar
  65. Torii Y. and Yoshioka S., 2007. Physical conditions producing slab stagnation: Constraints of the Clapeyron slope, mantle viscosity, trench retreat, and dip angles. Tectonophysics, 445, 200–209.CrossRefGoogle Scholar
  66. Trompert R. and Hansen U., 1998. Mantle convection simulations with rheologies that generate plate-like behaviour. Nature, 395, 686–689.CrossRefGoogle Scholar
  67. van Avendonk H., Holbrook W.S., Lizarralde D., Mora M.M., Harder S., Bullock A.D., Alvarado G.E. and Ramrez C.J., 2010. Seismic evidence for fluids in fault zones on top of the subducting Cocos Plate beneath Costa Rica. Geophys. J. Int., 181, 997–1016, DOI: 10.1111 /j.1365-246X.2010.04552.x.Google Scholar
  68. van Avendonk H., Holbrook W.S., Lizarralde D. and Denyer P., 2011. Structure and serpentinization of the subducting Cocos plate offshore Nicaragua and Costa Rica. Geochem. Geophys. Geosyst., 12, DOI: 10.1029/2011gc003592.Google Scholar
  69. van den Berg A.P., Yuen D.A. and van Keken P.E., 1991. Effects of depth-variations in creep laws on the formation of plates in mantle dynamics. Geophys. Res. Lett., 18, 2197–2200.CrossRefGoogle Scholar
  70. van den Berg A.P., van Keken P.E., and Yuen D.A., 1993. The effects of a composite non-Newtonian and Newtonian rheology on mantle convection. Geophys. J. Int., 115, 62–78.CrossRefGoogle Scholar
  71. van der Hilst R., 1995. Complex morphology of subducted lithosphere in the mantle beneath the Tonga trench. Nature, 374, 154–157.CrossRefGoogle Scholar
  72. van der Meer D.G., Spakman W., van Hinsbergen D.J.J., Amaru M.L. and Torsvik T.H., 2010. Towards absolute plate motions constrained by lower-mantle slab remnants. Nature Geosci., 3, 36–40.CrossRefGoogle Scholar
  73. van Heck H. and Tackley P.J., 2008. Plate tectonics on super-Earths: Equally or more likely than on Earth. Earth Planet. Sci. Lett., 310, 252–261.CrossRefGoogle Scholar
  74. van Hunen J., van den Berg A.P. and Vlaar N.J., 2000. A thermo-mechanical model of horizontal subduction below an overriding plate. Earth Planet. Sci. Lett., 182, 157–169.CrossRefGoogle Scholar
  75. van Hunen J., van den Berg A.P. and Vlaar N.J., 2001. Latent heat effects of the major mantle phase transitions on low-angle subduction. Earth Planet. Sci. Lett., 190, 125–135.CrossRefGoogle Scholar
  76. van Hunen J., van den Berg A.P. and Vlaar N.J., 2002. On the role of subducting oceanic plateaus in the development of shallow flat subduction. Tectonophysics, 352, 317–333.CrossRefGoogle Scholar
  77. van Hunen J., van den Berg A.P. and Vlaar N.J. 2004. Various mechanisms to induce present-day shallow flat subduction and implications for the younger Earth: a numerical parameter study. Phys. Earth Planet. Inter., 146, 179–194.CrossRefGoogle Scholar
  78. van Hunen J. and Allen M.B., 2011. Continental collision and slab break-off: A comparison of 3-D numerical models with observations. Earth Planet. Sci. Lett., 302, 27–37.CrossRefGoogle Scholar
  79. Yamazaki D., Karato S., 2001. Some mineral physics constraints on rheology and geothermal structure of earth’s lower mantle. Am. Mineral., 86, 358–391.Google Scholar
  80. Zhong S. and Gurnis M., 1986. Interaction of weak faults and non-Newtonian rheology produces plate tectonics in a 3-D model of mantle flow. Nature, 383, 245–247.CrossRefGoogle Scholar
  81. Zhong S. and Gurnis M., 1995a. Mantle convection with plates and mobile, faulted plate margins. Science, 267, 838–843.CrossRefGoogle Scholar
  82. Zhong S. and Gurnis M., 1995b. Towards a realistic simulation of plate margins in mantle convection. Geophys. Res. Lett., 22, 981–984.CrossRefGoogle Scholar
  83. Zhong S., Gurnis M. and Moresi L., 1998. Role of faults, nonlinear rheology, and viscosity structure in generating plates from instantaneous mantle flow models. J. Geophys. Res., 103(B8), 15255–15268.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2013

Authors and Affiliations

  • Adela Androvičová
    • 1
  • Hana Čížková
    • 1
  • Arie van den Berg
    • 2
  1. 1.Faculty of Mathematics and PhysicsCharles University in PraguePraha 8Czech Republic
  2. 2.Institute of Earth SciencesUtrecht UniversityUtrechtThe Netherlands

Personalised recommendations