Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Magnetic susceptibility and its relationship with paleoenvironments, diagenesis and remagnetization: examples from the Devonian carbonates of Belgium

  • 204 Accesses

  • 23 Citations


To better understand the origin of the initial magnetic susceptibility (χin) signal in carbonate sequences, a rock magnetic investigation that includes analysis of acquisition curves of the isothermal remanent magnetization (IRM) and hysteresis parameters, was undertaken on Devonian carbonates from the Villers and Tailfer sections, Belgium. Both sections are divided into a lower unit, dominated by biostromal and external ramp facies (biostromal unit) and an upper unit, only consisting of lagoonal facies (lagoonal unit). The variations in χin signal are mainly driven by magnetite variation, mostly pseudo-single-domain (PSD) magnetite. Clay minerals, pyrite, hematite and obviously calcite and dolomite are also present but their contribution to the χin pattern is not significant. There is a correlation between detrital proxies (Zr, Rb, Al2O3, TiO2) and χin for the Tailfer biostromal unit and the entire Villers section. The pervasive presence of fine-grained magnetite is interpreted as related to remagnetization. In absence of external fluids, the iron released during the smectite to illite transition remains in situ. In those situations χin may reflect an inherited primary synsedimentary signal. In the lagoonal unit of the Tailfer section, remagnetization appears to have obscured the original detrital information prompting the need for an evaluation of the composition of the susceptibility signal for individual case studies.

This is a preview of subscription content, log in to check access.


  1. Arai K., Sakai H. and Konishi K., 1997. High-resolution rock-magnetic variability in shallow marine sediment: a sensitive paleoclimatic metronome. Sediment. Geol., 110, 7–23.

  2. Babek O., Kalvoda J., Aretz M., Cossey P.J., DeVuyst F.-X., Herbig H.-G. and Sevastropulo G., 2010. The correlation potential of magnetic susceptibility and outcrop gamma-ray logs at Tournaisian-Viséan boundary sections in Western Europe. In: Da Silva A.C. and Boulvain F. (Eds.), Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geol. Belg., 13, 289–290.

  3. Bloemendal J., King J.W., Hall F.R. and Doh S.J., 1992. Rock magnetism of Late Neogene and Pleistocene deep-sea sediments: relationship to sediment source, diagenetic processes and sediment lithology. J. Geophys. Res., 97, 4361–4375.

  4. Borradaile G.J., Chow N. and Werner T., 1993. Magnetic hysteresis of limestones: facies control? Phys. Earth Planet. Inter., 76, 241–252.

  5. Borradaile G.J. and Lagroix F., 2000. Magnetic characterization using a three-dimensional hysteresis projection, illustrated with a study of limestones. Geophys. J. Int., 141, 213–226.

  6. Boulvain F., Da Silva A.C., Mabille C., Hladil J., Geršl M., Koptíková L. and Schnabl, P., 2010. Magnetic susceptibility correlation of km-thick Eifelian-Frasnian sections (Ardennes and Moravia). In: Da Silva A.C. and Boulvain F. (Eds.), Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geol. Belg., 13, 309–318.

  7. Calvert S.E. and Pedersen T.F., 1993. Geochemistry of recent oxic and anoxic marine sediments: implcations for the geological record. Mar. Geol., 113, 67–88.

  8. Canfield D.E. and Berner R.A., 1987. Dissolution and pyritization of magnetite in anoxie marine sediments. Geochim. Cosmochim. Acta, 51, 645–659.

  9. Curry W.B., Schneider D.A. and Party L.S., 1995. Ceara Rise sediments document ancient climate change. EOS Trans AGU, 76, 40–45.

  10. Da Silva A.C. and Boulvain F., 2004. From paleosols to carbonate mounds: facies and environments of Middle Frasnian carbonate platform in Belgium. Geol. Q., 48, 253–266.

  11. Da Silva A.C. and Boulvain F., 2006. Upper Devonian carbonate platform correlations and sea level variations recorded in magnetic susceptibility. Palaeogeogr. Palaeoclimat. Palaeoecol., 240, 373–388.

  12. Da Silva A.C., Mabille C. and Boulvain F., 2009. Influence of sedimentary setting on the use of magnetic susceptibility: examples from the Devonian of Belgium. Sedimentology, 56, 1292–1306.

  13. Da Silva A.C., Yans J. and Boulvain F., 2010. Early-Middle Frasnian (early Late Devonian) sedimentology and magnetic susceptibility of the Ardennes area (Belgium): identification of severe and rapid sea-level fluctuations. In: Da Silva A.C. and Boulvain F. (Eds.), Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geol. Belg., 13, 319–332.

  14. Day J., Fuller M. and Schmidt V.A., 1977. Hysteresis propreties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter., 13, 260–267.

  15. Devleeschouwer X., 1999. La transition Frasnien-Famennien (Dévonien Supérieur) en Europe: Sédimentologie, stratigraphie séquentielle et susceptibilité magnétique. PhD Thesis. Université Libre de Bruxelles, Bruxelles, Belgium (in French).

  16. Devleeschouwer X., Petitclerc E., Spassov S. and Préat A., 2010. The Givetian-Frasnian boundary at Nismes parastratotype (Belgium): the magnetic susceptibility signal controlled by ferromagnetic minerals. In: Da Silva A.C. and Boulvain F. (Eds.), Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geol. Belg., 13, 351–366.

  17. Duchesne J.C. and Bologne G., 2009. XRF major and trace elements determination in Fe-Ti oxide minerals. Geol. Belg., 12, 205–212.

  18. Egli R., 2004. Characterization of individual rock magnetic components by analysis of remanence curves. 3. Bacterial magnetite and natural processes in lakes. Phys. Chem. Earth, 29(13–14), 869–884.

  19. Ellwood B.B., Crick R.E. and El Hassani A., 1999. Magnetosusceptibility event and cyclostratigraphy (MSEC) method used in geological correlation of Devonian rocks from Anti-Atlas Morocco. AAPG Bull., 83, 1119–1134.

  20. Elrick M., 1995. Cyclostratigraphy of Middle Devonian carbonates of the eastern great basin. J. Sedim. Res., B65, 61–79.

  21. Fabian K. and von Dobeneck T., 1997. Isothermal magnetization of samples with stable Preisach function: a survey of hysteresis, remanence and rock magnetic parameters. J. Geophys. Res., 102, 659–677.

  22. Fielitz W. and Mansy J.L., 1999. Pre- and synorogenic burial metamorphism in the Ardenne and neighbouring areas (Rhenohercynian zone, central European Variscides). Tectonophysics, 309, 227–256.

  23. Heslop D., McIntosh G. and Dekkers M.J., 2004. Using time- and temperature-dependant Preisach models to investigate the limitations of modelling isothermal remanent magnetization acquisition curves with cumulative log Gaussian functions. Geophys. J. Int., 157, 55–63.

  24. Hladil J., 2002. Geophysical records of dispersed weathering products on the Frasnian carbonate platform and early Famennian ramps in Moravia, Czech Republic: proxies for eustasy and palaeoclimate. Palaeogeogr. Palaeoclimatol. Palaeoecol., 181, 213–250.

  25. Hladil J., Vondra M., Cejchan P., Vich R., Koptíková L. and Slavík L., 2010. The dynamic timewarping approach to comparison of magnetic-susceptibility logs and application to Lower Devonian calciturbidites (Prague Synform, Bohemian Massif). In: Da Silva A.C. and Boulvain F. (Eds.), Magnetic Susceptibility, Correlations and Palaeozoic Environments. Geol. Belg., 13, 385–406.

  26. Jackson M., 1990. Magnetic anisotropy of the Trenton limestone revised. Geophys. Res. Lett., 17, 1121–1124.

  27. Jackson M., McCabe C., Ballard M.M. and Van Der Voo R., 1988. Magnetite authigenesis and diagenetic paleotemperatures across the northern Appalchian basin. Geology, 16, 592–595.

  28. Jackson M., Rochette P., Fillion G., Benerjee S. and Marvin J., 1993. Rock magnetism of remagnetized Paleozoic carbonates: Low-temperature behavior and susceptibility characteristics. J. Geophys. Res., 98, 6217–6225.

  29. Karlin R. and Levi S., 1985. Geochemical and sedimentological control of the magnetic properties of hemipelagic sediments. J. Geophys. Res., 90, 373–392.

  30. Katz B., Elmore R.D., Cogoini M. and Ferry S., 1998. Widspread chemical remagnetization: orogenic fluids or burial diagenesis of clays? Geology, 26, 603–606.

  31. Kirschvink J.L. and Chang S.B.R., 1984. Ultrafine-grained magnetite in deep-sea sediments: possible bacterial magnetofossils. Geology, 12, 559–562.

  32. Kopp R.E. and Kirschvink J.L., 2008. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci. Rev., 86, 42–61.

  33. Kruiver P.P., Dekkers M.J. and Heslop D., 2001. Quantification of magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetization. Earth Planet. Sci. Lett., 189, 269–276.

  34. Kruiver P.P. and Passier H.F., 2001. Coercivity analysis of magnetic phases in sapropel S1 related to variations in redox conditions, including an investigation of the S ratio. Geochem. Geophys. Geosyst., 2, 2001GC000181.

  35. Kübler B. and Jaboyedoff M., 2000. Illite crystallinity. Concise review. C.R. Acad. Sci. IIA — Earth Planet. Sci., 331, 75–89.

  36. Lanson B., Sakharov B.A., Claret F. and Drits V.A., 2009. Diagenetic smectite-to-illite transition in clay-rich sediments: a reappraisal of X-ray diffraction results using the multi-specimen method. Am. J. Sci., 309, 476–516.

  37. Machel H.G. and Burton E.A., 1991. Causes of spatial distribution of anomalous magnetization in hydrocarbon seepage environments. AAPG Bull., 75, 1864–1876.

  38. McCabe C. and Channel J.E.T., 1994. Late Palaeozoic remagnetization during in limestones of the Craven Basin (Northern England) and rock magnetic fingerprinting of remagnetised carbonates. J. Geophys. Res., 99, 4603–4612.

  39. McCabe C. and Elmore R.D., 1989. The occurrence and origin of Late Paleozoic remagnetization in the sedimentary rocks of North America. Rev. Geophys., 27, 471–494.

  40. McNeill D.F., Ginsburg R.N., Chang S.B.R. and Kirschvink J.L., 1988. Magnetostratigraphic dating of shallow-water carbonates from San Salvador, Bahamas. Geology, 16, 8–12.

  41. Molina-Garza R. and Zijderveld J.D.A., 1996. Paleomagnetism and rock magnetism of Paleozoic strata, Brabant and Ardennes Masifs (Belgium) revisited: acquisition of pre-folding and postfolding late Paleozoc remanent magnetizations. J. Geophys. Res., 101, 15799–15818.

  42. Passier H.F., de Lange G.J. and Dekkers M.J., 2001. Magnetic properties and geochemistry of the active oxidation front and the youngest sapropel in the eastern Mediterranean Sea. Geophys. J. Int., 145, 604–614.

  43. Racki G., Racka M., Matyja H. and Devleeschouwer X., 2002. The Frasnian/Famennian boundary interval in the South Polish-Moravian shelf basins: integrated event-stratigraphical approach. Palaeogeogr. Palaeoclimatol. Palaeoecol., 181, 251–297.

  44. Riquier L., Averbuch O., Devleeschouwer X. and Tribovillard N., 2010. Diagenetic versus detrital origin of the magnetic susceptibility variations in some carbonate Frasnian-Famennian boundary sections from Northern Africa and Western Europe: implications for paleoenvironmental reconstructions. Int. J. Earth Sci., 99, S57–S73.

  45. Roberts A.P., Cui Y. and Verosub K.L., 1995. Waspwaisted hysteresis loops: Mineral magnetic characteristics and discrimination of components in mixed magnetic systems. J. Geophys. Res., 100, 17909–17924.

  46. Roberts A.P., Stoner J.S. and Richter C., 1999. Diagenetic magnetic enhancement of sapropels from the eastern Mediterranean Sea. Mar. Geol., 153, 103–116.

  47. Rowan C.J. and Roberts A.P., 2006. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet. Sci. Lett., 241, 119–137.

  48. Rowan C.J., Roberts A.P. and Broadbent T., 2009. Reductive diagenesis, magnetite dissolution, greigite growth and paleomagnetic smoothing in marine sediments: A new view. Earth Planet. Sci. Lett., 277, 223–235.

  49. Schabes M.E. and Bertram H.N., 1988. Magnetization processes in ferromagnetic cubes. J. Appl. Phys., 64, 1347–1357.

  50. Stolz J.F., Chang S.B.R. and Kirschvink J.L., 1986. Magnetotactic bacteria and single-domain magnetite in hemipelagic sediments. Nature, 321, 849–851.

  51. Tauxe L., Mullender T.A.T. and Pick T., 1996. Potbellies, wasp-waist, and superparamagnetic in magnetic hysteresis. J. Geophys. Res., 96, 11723–11740.

  52. Tauxe L., Bertram H.N. and Seberino C., 2002. Physical interpretation of hysteresis loops: Micromagnetic modeling of fine particle magnetite. Geochem. Geophys. Geosyst., 3, DOI: 10.1029/2001GC000241.

  53. Tribovillard N., Algeo T.J., Lyons T. and Riboulleau A., 2006. Trace metals as paleoredox and paleoproductivity proxies: An update. Chem. Geol., 232, 12–32.

  54. Walden J., Oldfield F. and Smith J., 1999. Environmental Magnetism: a Practical Guide. Quaternary Research Association, London, U.K., 243 pp.

  55. Wasilewski P.J., 1973. Magnetic hysteresis in natural materials. Earth Planet. Sci. Lett., 20, 67–72.

  56. Weil A.B. and Van Der Voo R., 2002. Insights into the mechanism for orogen-related carbonate remagnetization from growth of authigenic Fe-oxide: a scanning electron microscopy and rock magnetic study of Devonian carbonates from northern Spain. J. Geophys. Res., 107, 1–14.

  57. Whalen M.T. and Day J., 2008. Magnetic susceptibility, biostratigraphy and sequence stratigraphy: insights into Devonian carbonate platform development and basin infilling, Western Alberta, Canada. In: Lukasik J. and Simo J.A. (Eds.), Controls on Carbonate Platform and Reef Development. SEPM Spec. Publ., 89, 291–314.

  58. Whalen M.T., Eberli G.P., van Buchem F.S.P. and Mountjoy E.W., 2000. Facies models and architecture of Upper Devonian carbonate platforms (Miette an Ancient wall), Alberta, Canada. In: Homewood P.W. and Eberli G.P. (Eds.), Genetic Stratigraphy on the Exploration and the Production Scales. Mémoire 24, Elf ExplorationProduction, Pau, France, 139–178.

  59. Williams W. and Dunlop D.J., 1995. Simulation of magnetic hysteresis in pseudo-single-domain grains of magnetite. J. Geophys. Res., 100, 3859–3871.

  60. Zegers T.E., Dekkers M.J. and Baily S., 2003. Late Carboniferous to Permian remagnetization of Devonian limestones in the Ardennes: Role of temperature, fluids, and deformation. J. Geophys. Res., 108, 2357, DOI: 10.1029/2002JB002213.

  61. Zhang S., Wang X. and Zhu H., 2000. Magnetic susceptibility variations of carbonates controlled by sea level changes. Examples in Devonian to Carboniferous strata in southern Guizhou Province, China. Sci. China D, 43, 266–276.

  62. Zwing A., Bachtadse V. and Soffel H.C., 2002. Late Carboniferous remagnetization of Palaeozoic rocks in the NBE Renish Massif, Germany. Phys. Chem. Earth, 27, 1179–1188.

  63. Zwing A., Matzka J., Bachtadse V. and Soffel H.C., 2005. Rock magnetic properties of remagnetized Palaeozoic clastic and carbonate rocks from the NE Rhenish massif, Germany. Geophys. J. Int., 160, 477–486.

Download references

Author information

Correspondence to Anne-Christine Da Silva.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Da Silva, A., Dekkers, M.J., Mabille, C. et al. Magnetic susceptibility and its relationship with paleoenvironments, diagenesis and remagnetization: examples from the Devonian carbonates of Belgium. Stud Geophys Geod 56, 677–704 (2012). https://doi.org/10.1007/s11200-011-9005-9

Download citation


  • magnetic susceptibility
  • Devonian
  • carbonate
  • hysteresis loop
  • isothermal remanent magnetization (IRM) acquisition curves
  • detrital
  • diagenesis