Studia Geophysica et Geodaetica

, Volume 56, Issue 4, pp 909–927 | Cite as

A precise gravimetric geoid model in a mountainous area with scarce gravity data: a case study in central Turkey

  • Ramazan A. AbbakEmail author
  • Lars E. Sjöberg
  • Artu Ellmann
  • Aydin Ustun
Regular Paper


In mountainous regions with scarce gravity data, gravimetric geoid determination is a difficult task that needs special attention to obtain reliable results satisfying the demands, e.g., of engineering applications. The present study investigates a procedure for combining a suitable global geopotential model and available terrestrial data in order to obtain a precise regional geoid model for Konya Closed Basin (KCB). The KCB is located in the central part of Turkey, where a very limited amount of terrestrial gravity data is available. Various data sources, such as the Turkish digital elevation model with 3 ″ × 3″ resolution, a recently published satellite-only global geopotential model from the Gravity Recovery and Climate Experiment satellite (GRACE) and the ground gravity observations, are combined in the least-squares sense by the modified Stokes’ formula. The new gravimetric geoid model is compared with Global Positioning System (GPS)/levelling at the control points, resulting in the Root Mean Square Error (RMS) differences of ±6.4 cm and 1.7 ppm in the absolute and relative senses, respectively. This regional geoid model appears to be more accurate than the Earth Gravitational Model 2008, which is the best global model over the target area, with the RMS differences of ±8.6 cm and 1.8 ppm in the absolute and relative senses, respectively. These results show that the accuracy of a regional gravimetric model can be augmented by the combination of a global geopotential model and local terrestrial data in mountainous areas even though the quality and resolution of the primary terrestrial data are not satisfactory to the geoid modelling procedure.


geoid KTH method Konya Closed Basin least-squares modification Stokes’ formula 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ayhan M.E., Demir C., Lenk O., Kılıçoğlu A., Aktug B., Acikgoz M., Firat O., Sengun Y.S., Cingoz A., Gurdal M.A., Kurt A.I., Ocak M., Turkezer A., Yildiz H., Bayazit N., Ata M., Caglar Y. and Ozerkan A., 2002. Turkish National Fundamental GPS Network; 1999A (TUTGA-99A), Turkish Journal of Mapping (Harita Dergisi), Special Issue 16, (in Turkish).Google Scholar
  2. Bildirici I.O., Ustun A., Ulugtekin N., Selvi H.Z., Abbak R.A., Bugdayci I. and Dogru A.O., 2009. Compilation of digital elevation model for Turkey in 3-arc-second resolution by using SRTM data supported with local elevation data. In: Gartner G. and Ortag F. (Eds.), Cartography in Central and Eastern Europe. Lecture Notes in Geoinformation and Cartography. Springer-Verlag, Heidelberg, Germany, 63–76.CrossRefGoogle Scholar
  3. Ellmann A., 2004. The Geoid for the Baltic Countries Determined by the Least Squares Modification of Stokes Formula. Ph.D. Thesis, Royal Institute of Technology (KTH), Division of Geodesy, Stockholm, Sweden.Google Scholar
  4. Ellmann A., 2005a. Computation of three stochastic Modifications of Stokes’ Formula for regional geoid determination. Comput. Geosci., 31, 742–755.CrossRefGoogle Scholar
  5. Ellmann A., 2005b. Two deterministic and three stochastic modifications of Stokes’ formula: a case study for the Baltic countries. J. Geodesy, 79, 11–23.CrossRefGoogle Scholar
  6. Ellmann A. and Sjöberg L.E., 2004. Ellipsoidal correction for the modified Stokes’ formula. Boll. Geod. Sci. Aff., 63, 153–172.Google Scholar
  7. Flechtner F., Dahle C., Neumayer K.H., König R. and Förste C., 2010. The Release 04 CHAMP and GRACE EIGEN gravity field models. In: Flechtner F.M., Gruber Th., Güntner A., Mandea M., Rothacher M., Schöne T. and Wickert J. (Eds.), System Earth via Geodetic-Geophysical Space Techniques. Advanced Technologies in Earth Sciences. Springer-Verlag, Heidelber, Germany, 41–58, ISBN 978-3-642-10227-1, DOI 978-3-642-10228-8.CrossRefGoogle Scholar
  8. Hagiwara Y., 1976. A new formula for evaluating the truncation error coefficient. Bulletin Geodesique, 50, 131–135.CrossRefGoogle Scholar
  9. Heiskanen W.A. and Moritz H., 1967. Physical Geodesy. W.H. Freeman and Co., London, U.K.Google Scholar
  10. Janák J. and Vaníček P., 2005. Mean free-air gravity anomalies in the mountains. Stud. Geophys. Geod., 49, 31–42.CrossRefGoogle Scholar
  11. Kiamehr R., 2006. Precise Gravimetric Geoid Model for Iran Based on GRACE and SRTM Data and the Least Squares Modification of the Stokes’ Formula with Some Geodynamic Interpretations. Ph.D. Thesis. Royal Institute of Technology (KTH), Department of Transport and Economics, Stockholm, Sweden.Google Scholar
  12. Kiamehr R., 2007. Qualification and refinement of the gravity database based on cross-validation approach. A case study of Iran. Acta Geod. Geophys. Hung., 42, 195–195.Google Scholar
  13. Kotsakis C. and Sideris M.G., 1999. On the adjustment of combined GPS/levelling/geoid networks. J. Geodesy, 73, 412–421.CrossRefGoogle Scholar
  14. Krige D.G., 1951. A statistical approach to some basic mine valuation problems on the Witwatersrand. J. Chem. Metall. Min. Soc. S. Afr., 52(6), 119–139, DOI: 10.2307/3006914.Google Scholar
  15. Martinec Z., 1998. Boundary-Value Problems for Gravimetric Determination of a Precise Geoid. Springer-Verlag, Berlin, Germany.Google Scholar
  16. Mayer-Guerr T., Kurtenbach E. and Eicker A., 2010. ITG-Grace2010 Gravity Field Model.
  17. Meissl P., 1971. A Study of Covariance Functions from Discrete Mean Value. Report No.151, Department of Geodetic Sciences, Ohio State University, Columbus, USA.Google Scholar
  18. Molodensky M.S., Yeremeev V.F. and Yurkina M.I., 1960. Methods for study of the external gravitational field and figure of the Earth. TRUDY Ts NIIGAiK, 131, Geodezizdat, Moscow (English translat.: Israel Program for Scientific Translation, Jerusalem 1962).Google Scholar
  19. Paul M.K., 1973. A method of evaluating the truncation error coefficients for geoidal height. Bulletin Geodesique, 110, 413–425.CrossRefGoogle Scholar
  20. Pavlis N.K., Holmes S.A., Kenyon S.C. and Factor J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. Geophysical Research Abstracts, 10, 2-2-2008. Full version released by National Geospatial-Intelligence Agency, Bethesda, MD, (
  21. Sjöberg L.E., 1981. Least squares combination of satellite and terrestrial data in physical geodesy. Ann. Geophys., 37, 25–30.Google Scholar
  22. Sjöberg L.E., 1984. Least-Squares Modification of Stokes and Venning-Meinesz Formulas by Accounting for Errors of Truncation, Potential Coeffcients and Gravity Data. Technical Report, Department of Geodesy, Institute of Geophysics, University of Uppsala, Uppsala, Sweden.Google Scholar
  23. Sjöberg L.E., 1991. Refined least squares modification of Stokes formula. Manuscripta Geodaetica, 16, 367–375.Google Scholar
  24. Sjöberg L.E., 2001. The topographic and atmospheric corrections of gravimetric geoid determination with special emphasis on the effects of degrees of zero and one. J. Geodesy, 75, 283–290.CrossRefGoogle Scholar
  25. Sjöberg L.E., 2003a. A computational scheme to model geoid by the modified Stokes formula without gravity reductions. J. Geodesy, 77, 423–432.CrossRefGoogle Scholar
  26. Sjöberg L.E., 2003b. A general model of modifying Stokes formula and its least squares solution. J. Geodesy, 77, 790–804.Google Scholar
  27. Sjöberg L.E., 2003c. A solution to the downward continuation effect on the geoid determination by Stokes formula. J. Geodesy, 77, 94–100.CrossRefGoogle Scholar
  28. Sjöberg L.E., 2004. A spherical harmonic representation of the ellipsoidal correction to the modified Stokes formula. J. Geodesy, 78, 180–186.CrossRefGoogle Scholar
  29. Sjöberg L.E. and Hunegnaw A., 2000. Some modifications of Stokes’ formula that account for truncation and potential coefficient errors. J. Geodesy, 74, 232–238.CrossRefGoogle Scholar
  30. Sjöberg L.E. and Nahavandchi H., 2000. The atmospheric geoid effects in Stokes’ formula. Geophys. J. Int., 140, 95–100.CrossRefGoogle Scholar
  31. Ulotu P.E., 2009. Geoid Model of Tanzania from Sparse and Varying Gravity Data Density by the KTH Method. Ph.D. Thesis. Division of Transport and Economics, Royal Institute of Technology (KTH), Stockholm, Sweden.Google Scholar
  32. Ustun A. and Abbak R.A., 2010. On global and regional spectral evaluation of global geopotential models. J. Geophys. Eng., 7, 369–379.CrossRefGoogle Scholar
  33. Vaníček P. and Featherstone W.E., 1998. Performance of three types of Stokes’s kernel in the combined solution for the geoid. J. Geodesy, 72, 684–697.CrossRefGoogle Scholar
  34. Vaníček P. and Kleusberg A., 1987. The Canadian geoid — Stokes approach. Manuscripta Geodaetica, 12, 86–98.Google Scholar
  35. Vaníček P., Novák P. and Martinec Z., 2001. Geoid, topography, and the Bouguer plate or shell. J. Geodesy, 75, 210–215.CrossRefGoogle Scholar
  36. Vaníček P., Tenzer R. and Sjöberg L.E., 2004. New views of the spherical Bouguer gravity anomaly. Geophys. J. Int., 159, 460–472.CrossRefGoogle Scholar
  37. Vincent S. and Marsch J., 1974. Gravimetric global geoid. In: Veis G. (Ed.), Proceedings of International Symposium on the Use of Artificial Satellites for Geodesy and Geodynamics. National Technical University, Athens, Greece.Google Scholar
  38. Wong L. and Gore R., 1969. Accuracy of geoid heights from the modified Stokes kernels. Geophys. J. R. Astron. Soc., 18, 81–91.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2012

Authors and Affiliations

  • Ramazan A. Abbak
    • 1
    Email author
  • Lars E. Sjöberg
    • 2
  • Artu Ellmann
    • 3
  • Aydin Ustun
    • 1
  1. 1.Department of Geomatics EngineeringSelcuk UniversityKonyaTurkey
  2. 2.Division of Geodesy and GeoinformaticsRoyal Institute of TechnologyStockholmSweden
  3. 3.Geodesy DivisionTallinn University of TechnologyTallinnEstonia

Personalised recommendations