Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kirchhoff prestack depth migration in 3-D simple models: comparison of triclinic anisotropy with simpler anisotropies


We use Kirchhoff prestack depth migration to calculate migrated sections in 3-D simple anisotropic homogeneous velocity models in order to demonstrate the impact of anisotropy on migrated images. The recorded wave field is generated in models composed of two homogeneous layers separated by one either non-inclined or inclined curved interface. The anisotropy in the upper layer is triclinic. We apply Kirchhoff prestack depth migration to velocity models with different types of anisotropy: a triclinic anisotropic medium, an isotropic medium, transversely isotropic media with a horizontal (HTI) and vertical (VTI) symmetry axis. We observe asymmetry in migration caused by triclinic anisotropy and we show the errors of the migrated interface caused by inaccurate velocity models used for migration. The study is limited to P-waves.

This is a preview of subscription content, log in to check access.


  1. Alkhalifah T. and Larner K., 1994. Migration error in transversely isotropic media. Geophysics, 59, 1405–1418.

  2. Ball G., 1995. Estimation of anisotropy and anisotropic 3-D prestack depth migration, offshore Zaire. Geophysics, 60, 1495–1513.

  3. Behera L. and Tsvankin I., 2009. Migration velocity analysis for tilted transversely isotropic media. Geophys. Prospect., 57, 13–26.

  4. Bucha V., 2010. Kirchhoff prestack depth migration in simple models of various anisotropy. In: Seismic Waves in Complex 3-D Structures, Report 20, Dep. Geophys., Charles Univ., Prague, 35–52, (online at

  5. Bulant P., 1996. Two-point ray tracing in 3-D. Pure Appl. Geophys., 148, 421–447.

  6. Červený V., Klimeš L. and Pšenčík I., 1988. Complete seismic-ray tracing in three-dimensional structures. In: Doornbos D.J.(Ed.), Seismological Algorithms. Academic Press, New York, 89–168.

  7. Gajewski D. and Pšenčík I., 1990. Vertical seismic profile synthetics by dynamic ray tracing in laterally varying layered anisotropic structures. J. Geophys. Res., 95, 11301–11315.

  8. Isaac J.H. and Lawton D.C., 1999. Image mispositioning due to dipping TI media: A physical seismic modeling study. Geophysics, 64, 1230–1238.

  9. Larner K. and Cohen J.K., 1993. Migration error in factorized transversely isotropic media with linear velocity variation in depth. Geophysics, 58, 1454–1467.

  10. Mensch, T. and Rasolofosaon, P., 1997. Elastic-wave velocities in anisotropic media of arbitrary symmetry-generalization of Thomsens parameters ε, δ and γ. Geophys. J. Int., 128, 43–64.

  11. Tsvankin I., Gaiser J., Grechka V., Baan M. and Thomsen L., 2010. Seismic anisotropy in exploration and reservoir characterization: An overview. Geophysics, 75, 75A15–75A29.

  12. Versteeg R.J. and Grau G. (Eds.), 1991. Proc. EAGE workshop on Practical Aspects of Seismic Data Inversion (Copenhagen, 1990), Eur. Assoc. Explor. Geophysicists, Zeist.

  13. Vestrum R.W., Lawton D.C. and Schmid R., 1999. Imaging structures below dipping TI media. Geophysics, 64, 1239–1246.

  14. Vestrum R. and Lawton D., 2010. Reflection point sideslip and smear in imaging below dipping anisotropic media. Geophys. Prospect., 58, 541–548.

Download references

Author information

Correspondence to Václav Bucha.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bucha, V. Kirchhoff prestack depth migration in 3-D simple models: comparison of triclinic anisotropy with simpler anisotropies. Stud Geophys Geod 56, 533–552 (2012).

Download citation


  • 3-D Kirchhoff prestack depth migration
  • anisotropic velocity model