Advertisement

Studia Geophysica et Geodaetica

, Volume 57, Issue 2, pp 292–308 | Cite as

Upper crustal electrical resistivity structures in the vicinity of the Çatalca Fault, Istanbul, Turkey by magnetotelluric data

  • Gökhan Karcioğlu
  • Sabri Bülent Tank
  • Aysan Gürer
  • Elif Tolak Çiftçi
  • Tülay Kaya
  • Mustafa Kemal Tunçer
Article

Abstract

A magnetotelluric survey was performed at the Çatalca Region, west of Istanbul, Turkey with the aim of investigating geoelectrical properties of the upper crust near the Çatalca Fault and its vicinity. Broadband magnetotelluric data were collected at nine sites along a single southwest-northeast profile to image the electrical resistivity structure from surface to the 5 km depth. The dimensionality of the data was examined through tensor decompositions and highly two-dimensional behavior of the data is shown. Following the tensor decompositions, two-dimensional inversions were carried out where E-polarization, B-polarization and tipper data were utilized to construct electrical resistivity models. The results of the inversions suggest: a) the Çatalca Fault extends from surface to 5 km depth as a conductive zone dipping to southwest; b) the thickness of the sedimentary cover is increasing from SW to NE to 700 m with low resistivity values between 1–100 Ωm; c) the crystalline basement below the sedimentary unit is very resistive and varies between 2000–100000 Ωm; d) a SW-dipping resistivity boundary in the northeastern part of our profile may represent the West Black Sea Fault.

Keywords

magnetotelluric fault zone imaging electrical conductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bahr K., 1991. Geological noise in magnetotelluric data: a classification of distortion types. Phys. Earth Planet. Inter., 66, 24–38.CrossRefGoogle Scholar
  2. Bahr K., Bantin M., Jantos Chr., Schneider E. and Storz W., 2000. Electrical anisotropy from electromagnetic array data: implications for the conduction mechanism and for distortion at long periods. Phys. Earth Planet. Inter., 119, 237–257.CrossRefGoogle Scholar
  3. Bayrak M. and Nalbant S.S., 2001. Conductive crust imaged in Western Turkey by MT. Geophys. Res. Lett., 28, 3521–3524.CrossRefGoogle Scholar
  4. Bayrak M., Gürer A. and Gürer Ö.F., 2004. Electromagnetic imaging of the Thrace Basin and Intra-Pontide Subduction Zone, Northwestern Turkey. Int. Geol. Rev., 46, 64–74.CrossRefGoogle Scholar
  5. Bedrosian P.A., Unsworth M.J. and Egbert G.D., 2002. Magnetotelluric imaging of the creeping segment of the San Andreas Fault near Hollister. Geophys. Res. Lett., 29, 1506, DOI: 10.1029/2001GL012119.CrossRefGoogle Scholar
  6. Bedrosian P.A., Unsworth M.J., Egbert G.D. and Thurber C.H., 2004. Geophysical images of the creeping segment of the San Andreas fault: implications for the role of crustal fluids in the earthquake process. Tectonophysics, 385, 137–158, DOI: 10.1016/j.tecto.2004.02.010.CrossRefGoogle Scholar
  7. Caine J.S., Evans J.P. and Forster C.P., 1996. Fault zone architecture and permeability structure. Geology, 24, 1125–1128.CrossRefGoogle Scholar
  8. Caldwell T.G., Bibby H.M. and Brown C., 2004. The magnetotelluric phase tensor. Geophys. J. Int., 158, 457–469.CrossRefGoogle Scholar
  9. Chave A.D. and Smith J.T., 1994. On electric and magnetic galvanic distortion tensor decompositions. J. Geophys. Res., 99, 4669–4682.CrossRefGoogle Scholar
  10. Çağlar I., 2001. Electrical resistivity structure of the northwestern Anatolia and its tectonic implications for the Sakarya and Bornova zones. Phys. Earth Planet. Inter., 125, 95–110.CrossRefGoogle Scholar
  11. Elmas A. and Yiğitbaş E., 2001. Ophiolite emplacement by strike-slip tectonics between the Pontide Zone and the Sakarya Zone in northwestern Anatolia, Turkey. Int. J. Earth Sci., 90, 257–269.CrossRefGoogle Scholar
  12. Elmas A. and Gürer A., 2004. A comparison of the geological and geoelectrical structures in the eastern Marmara Region (NW Turkey). J. Asian Earth Sci., 23, 153–162.CrossRefGoogle Scholar
  13. Gabas A. and Marcuello A., 2003. The relative influence of different types of magnetotelluric data on joint inversions. Earth Planets Space, 55, 243–248.Google Scholar
  14. Gamble T.D., Goubau W.M. and Clarke J., 1979. Magnetotellurics with a remote magnetic reference. Geophysics, 44, 53–68.CrossRefGoogle Scholar
  15. Gökaşan E., Gazioğlu C., Alpar B., Yücel Z.Y., Ersoy Ş., Gündoğdu O., Yaltırak C. and Tok B., 2002. Evidence of NW extension of the North Anatolian Fault Zone in the Marmara Sea; a new interpretation of the Marmara Sea (İzmit) earthquake on 17 August 1999. Geo-Mar. Lett., 21, 183–199.CrossRefGoogle Scholar
  16. Groom R.W. and Bailey R.C.,1989. Decomposition of magnetotelluric impedance tensor in the presence of local three-dimensional galvanic distortion. J. Geophys. Res., 132, 1913–1925.CrossRefGoogle Scholar
  17. Gürer A., 1996. Deep conductivity structure of the North Anatolian fault zone and the Istanbul Sakarya zones along the Gölpazarı-Akçaova profile, Northwest Anatolia. Int. Geol. Rev., 38 727–737.CrossRefGoogle Scholar
  18. Gürer A., Gürer Ö.F., Pinçe A. and İlkışık O.M., 2001. Conductivity structure along the Gediz graben, West Anatolia, Turkey: Tectonic implications. Int. Geol. Rev., 43, 1129–1144.CrossRefGoogle Scholar
  19. Gürer A., Bayrak M., Gürer Ö.F. and İlkışık O.M, 2004a. The deep resistivity structure of southwestern Turkey: Tectonic implications. Int. Geol. Rev., 7, 655–670.CrossRefGoogle Scholar
  20. Gürer A., Bayrak M., Gürer Ö.F. and İlkışık O.M, 2004b. Magnetotelluric images of crust and mantle in southwestern Taurides, Turkey. Tectonophysics, 391, 109–120.CrossRefGoogle Scholar
  21. Gürer A., 2007. Magnetotelluric method in Turkey: history and development (Turkiye’de manyetotellurik yontem: Tarihcesi ve gelisimi). University of Istanbul Engineering Faculty, Istanbul Earth Sciences Review (İstanbul Unv., Muh. Fak. Yerbilimleri Dergisi), 20, 51–62 (in Turkish).Google Scholar
  22. Heise W., Caldwell T.J., Bibby H.M. and Brown C., 2006. Anisotropy and phase splits in Magnetotellurics. Phys. Earth Planet. Inter., 158, 107–121.CrossRefGoogle Scholar
  23. Hoffmann-Rothe A., Ritter O. and Janssen C. 2004. Correlation of electrical conductivity and structural damage at a major strike-slip fault in northern Chile. J. Geophys. Res., 109, B10101, DOI: 10.1029/2004JB003030.CrossRefGoogle Scholar
  24. Horasan G., Güney A.B., Küsmezer A., Bekler F., Öğütçü Z. and Musaoğlu N., 2009. Contamination of seismicity catalogs by quarry blasts: An example from İstanbul and its vicinity, northwestern Turkey. J. Asian Earth Sci., 34, 90–99.CrossRefGoogle Scholar
  25. İlkışık O.M., 1980. Investigation of Crustal Structure in Thrace Using Magnetotelluric Method (Trakya'da Yer Kabuğunun Manyetotelürik Töntem ile İncelenmesi). Ph.D. Thesis, Istanbul Technical University, Faculty of Mines, Istanbul, Turkey (in Turkish).Google Scholar
  26. Jones A.G. and Groom R.G., 1993. Strike angle determination from the magnetotelluric impedance tensor in the presence of noise and local distortion: Rotate at your peril! Geophys. J. Inter., 113, 524–534.CrossRefGoogle Scholar
  27. Kaya T., Tank S.B., Tunçer M.K., Rokityansky I.I., Tolak E. and Savchenko T., 2009. Asperity along the North Anatolian Fault imaged by magnetotellurics at Düzce, Turkey. Earth Planets Space, 61, 871–884.Google Scholar
  28. Kellet R.L., Mareschal M. and Kurtz R.D., 1992. A model of lower crustal electrical anisotropy for the Pontiac Subprovince of the Canadian Shield. Geophys. J. Int., 111, 141–150.CrossRefGoogle Scholar
  29. Koral H., 1998. Progresive Mid-Tertiary geometry of a Majot crustal fault in the Southeastern Strandjha Masif. Proceedings of the 12th International Petroleum Congress and Exhibition of Turkey, Ankara, Turkey, 15–30.Google Scholar
  30. Ledo J., 2005. 2-D versus 3-D magnetotelluric data interpretation. Surv. Geophys., 26, 511–543.CrossRefGoogle Scholar
  31. McNneice G.W. and Jones A.G., 2001. Multisite, multifrequency tensor decomposition of magnetotelluric data. Geophysics, 66, 158–173.CrossRefGoogle Scholar
  32. MTA, 2002. 1/5000 Scaled Geological Map of Turkey, Istanbul Section (Ölçekli Türkiye Jeoloji Haritası İstanbul Paftası). General Directorate of Mineral Research and Exploration (Maden Tetkik ve Arama Genel Müdürlüğü, MTA), Ankara, Turkey (in Turkish).Google Scholar
  33. MTA, 2004. Geoscientific Informations of the Urbanization Areas at the West of Istanbul Metropolitan Area (Küçükçekmece-Silivri-Çatalca Regions) (Istanbul Metropolü Batısındaki (Küçükçekmece-Silivri-Çatalca Yöresi) Kentsel Gelişme Alanlarının Yer Bilim Verileri). General Directorate of Mineral Research and Exploration (Maden Tetkik ve Arama Genel Müdürlüğü, MTA), Ankara, Turkey, ISBN: 975-6595-89-2 (in Turkish).Google Scholar
  34. Ogawa Y. and Uchida T., 1996. A two-dimensional magnetotelluric inversion assuming Gaussian static shift. Geophys. J. Inter., 126, 69–76.CrossRefGoogle Scholar
  35. Okay A.I., Şengör A.M.C. and Görür N., 1994. Kinematic history of the opening of the Black Sea and its effects on the surrounding regions. Geology, 22, 267–270.CrossRefGoogle Scholar
  36. Okay A., Satır M., Tüysuz O., Akyüz S. and Chen F., 2001. The tectonics of the Strandja Masif: Late-Variscan and Mid-Mesozoic deformation and metamorphism in the Northern Aegean. Int. J. Earth Sci., 90, 217–233.CrossRefGoogle Scholar
  37. Parkinson W.D., 1962. The influence of continents and oceans on geomagnetic variations. Geophys. J. R. Astron. Soc., 6, 441–449.CrossRefGoogle Scholar
  38. Phoenix Geophysics, 2005. Data Processing User Guide. Phoenix Geophysics, Toronto, Canada.Google Scholar
  39. Ritter O., Ryberg T., Weckmann U., Hoffmannrothe A., Abueladas A., Garfunkel Z. and Desert Research Group, 2003. Geophysical images of the Dead Sea Transform in Jordan reveal an impermeable barrier for the fluid flow. Geophys. Res. Lett., 30, 1741, DOI: 10.1029/2003GL017541.CrossRefGoogle Scholar
  40. Ritter O., Hoffmann-Rothe A., Bedrosian P.A., Weckmann U. and Haak V., 2005. Electrical conductivity images of active and fossil fault zones. Geol. Soc. London Spec. Publ., 245, 165–186.CrossRefGoogle Scholar
  41. Shankland T.J. and Ander M.E., 1983. Electrical conductivity, temperatures, and fluids in the lower crust. J. Geophys. Res., 88, 9475–9484.CrossRefGoogle Scholar
  42. Sibson R.H., 2000. Fluid involvement in normal faulting. J. Geodyn., 29, 469–499.CrossRefGoogle Scholar
  43. Swift C., 1967. A Magnetotelluric Investigation of an Electrical Conductivity Anomaly in the Ssouthwestern United States. PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.Google Scholar
  44. Tank S.B., Honkura Y., Ogawa Y., Oshiman N., Tunçer M.K., Çelik C., Tolak E. and Işıkara A.M., 2003. Resistivity structure in the western part of the fault rupture zone associated with the 1999 Izmit earthquake and its seismogenic implication. Earth Planets Space, 55, 437–442.Google Scholar
  45. Tank S.B., Honkura Y., Ogawa Y., Matsushima M., Oshiman N., Tunçer M.K., Çelik C., Tolak E. and Işıkara A.M., 2005. Magnetotelluric imaging of the fault rapture area of the 1999 Izmit (Turkey) earthquake. Phys. Earth Planet. Inter., 150, 213–225.CrossRefGoogle Scholar
  46. Türkoğlu E., Unsworth M., Çağlar İ., Tuncer V. and Avşar Ü., 2008. Lithospheric structure of the Arabia-Eurasia collision zone in eastern Anatolia: Magnetotelluric evidence for widespread weakening by fluids? Geology, 36, 619–622.CrossRefGoogle Scholar
  47. Ulugergerli E.U., Seyitoğlu G., Başokur A.T., Kaya C., Dikmen U. and Candansayar M.E., 2007. The geoelectrical structure of northwestern Anatolia, Turkey. Pure Appl. Geophys., 164, 999–1026.CrossRefGoogle Scholar
  48. Unsworth M.J., Malin P.E., Egbert G.D. and Booker J.R., 1997. Internal structure of the San Andreas Fault Zone at Parkfield, California. Geology, 25, 359–362.CrossRefGoogle Scholar
  49. Unsworth M.J., Egbert G.D. and Booker J.R. 1999. High resolution electromagnetic imaging of the San Andreas fault in central California. J. Geophys. Res., 104, 1131–1150.CrossRefGoogle Scholar
  50. Ustaömer P.A. and Rogers G., 1999. The Bolu Massif: remnant of a pre-Early Ordovician active margin in the west Pontides, northern Turkey. Geol. Mag., 136, 579–592.CrossRefGoogle Scholar
  51. Vozoff K., 1991. The magnetotelluric method. In: Nabighian M.N. (Ed.), Electromagnetic Methods in Applied Geophysics, Vol. 2, Application. Society of Exploration Geophysicists, Tulsa, Oklahoma, 641–712.CrossRefGoogle Scholar
  52. Wannamaker P.E., Jiracek G.R., Todt J.A., Caldwell T.G., Gonzales V.M., Mcknight J.D. and Porter A.D. 2002. Fluid generation and pathways beneath an active compressional orogen, the New Zealand Alps, inferred from magnetotelluric data. J. Geophys. Res., 107, 211, DOI: 10.1029/2001JB000186.CrossRefGoogle Scholar
  53. Yılmaz Y., Tuysuz O., Yigitbas E., Genc S.C. and Sengor A.M.C., 1997. Geology and tectonic evolution of the Pontides. In: Robinson A.G. (Ed.), Regional and Petroleum Geology of the Black Sea and Surrounding Region. AAPG Memoir, 68, 183–226.Google Scholar
  54. Zhao D., Mishra O.P. and Sanda R., 2002. Influence of fluids and magma on earthquakes: seismological evidence. Phys. Earth Planet. Inter., 132, 249–267.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2013

Authors and Affiliations

  • Gökhan Karcioğlu
    • 1
  • Sabri Bülent Tank
    • 2
  • Aysan Gürer
    • 1
  • Elif Tolak Çiftçi
    • 2
  • Tülay Kaya
    • 2
  • Mustafa Kemal Tunçer
    • 1
  1. 1.Department of GeophysicsUniversity of İstanbulİstanbulTurkey
  2. 2.Department of GeophysicsBoğaziçi University, Kandilli Observatory and Earthquake Research InstituteİstanbulTurkey

Personalised recommendations