Studia Geophysica et Geodaetica

, Volume 55, Issue 2, pp 377–388 | Cite as

Magnetic monitoring of top soils of Merida (Southern Mexico)

  • Bertha Aguilar ReyesEmail author
  • Francisco Bautista
  • Avto Goguitchaichvili
  • Ofelia Morton


This paper focuses on the study of the correlation between magnetic parameters with the level of contamination by heavy metals in urban soils. We report a magnetic investigation of urban soil samples from Merida, state of Yucatan, Southern Mexico. It appears that most of our samples contain ferrimagnetic minerals as the magnetic carriers, probably coming from the titanomagnetites/titanomaghemites series. This is inferred by the acquisition of isothermal remanent magnetization, which shows that most of samples are almost completely saturated at about 200 mT. The S−200 value (factor characterizing stability of remanent magnetization) is between 0.8 and 1.0, characteristic of ferrimagnetic minerals. The susceptibility vs. temperature measurements also point to some titanomaghemites and titanomagnetites as probable responsible for magnetization. On the other hand, measurements of magnetic susceptibility at high and low frequencies helped us to determine the high content of superparamagnetic grains in the majority of the samples, although not all of these showed high values of magnetic susceptibility. We found that the most contaminated samples by Pb and Zn showed the higher saturation isothermal remanent magnetization values, whereas the higher values in magnetic susceptibility correspond to samples contaminated by Cr. Finally, we noted that a high level in Sr decreases the magnetic susceptibility.


soil contamination magnetic susceptibility magnetic monitoring magnetic parameters heavy metals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abdul-Razzaq W. and Gautamm M., 2001. Discovery of magnetite in the exhausted material from a diesel engine. Appl. Phys. Lett., 78, 2018–2019.CrossRefGoogle Scholar
  2. Bautista F., Aguilar Y., Rivas H. and Páez R., 2007. Los suelos del estado de Yucatán. In: Sánchez M. and Cabañas D. (Eds.), Importancia del Binomio Suelo-Materia Orgánica en el Desarrollo Sostenible. Agencia Española de Cooperación Internacional y el Centro de Edafología y Biología Aplicada del Segura de Murcia, España, 11–42 (in Spanish).Google Scholar
  3. Bityukova L., Scholger R. and Birke M., 1999. Magnetic susceptibility as indicator of environmental pollution of soils in Tallinn. Phys. Chem. Earth (A), 24, 829–835.CrossRefGoogle Scholar
  4. Chaparro M.A.E., Gogorza C.S., Lavat A., Pazos S. and Sinito A.M., 2002. Preliminary results of magnetic characterisation of different Soils in Tandil Region (Argentina) affected by the pollution of metallurgical factory. Eur. J. Environ. Eng. Geophys., 7, 35–58.Google Scholar
  5. Dearing J.A., Dann R.J.L., Hay K., Lees J.A., Loveland P.J., Maher B.A. and O’Grady K., 1996. Frequency dependent susceptibility measurements of environmental materials. Geophys. J. Int., 124, 228–240.CrossRefGoogle Scholar
  6. Dearing J., 1999. Environmental Magnetic Susceptibility. Using the Bartington MS2 System. Chi Publishing, Kenilworth, U.K., pp. 104.Google Scholar
  7. Deng C.L., Vidic N.J., Verosub K.L., Singer M.J., Liu Q.S., Shaw J. and Zhu R.X., 2005. Mineral magnetic variation of the Jiaodao Chinese loess/paleosol sequence and its bearing on long-term climatic variability. J. Geophys. Res., 110, B03103, DOI: 10.1029/2004JB003451.CrossRefGoogle Scholar
  8. Desenfant F., Petrovský E. and Rochette P., 2004. Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. Water Air Soil Pollut., 152, 297–312.CrossRefGoogle Scholar
  9. Dunlop D.J. and Özdemir Ö., 1997. Rock Magnetism — Fundamentals and Frontiers. Cambridge University Press, Cambridge, 573 pp.CrossRefGoogle Scholar
  10. Ďurža O., 1999. Heavy metals contamination and magnetic susceptibility in soils around metallurgical plant. Phys. Chem. Earth (A), 24, 541–543.CrossRefGoogle Scholar
  11. ESRI, 2004. Arc GIS 9, Getting Started with ArcGIS. Environmental Systems Research Institute, Inc., Redlands, USA.Google Scholar
  12. Evans M.E. and Heller F., 2003. Environmental Magnetism — Principles and Applications of Enviromagnetics. International Geophysics Series, V 86, Academic press, Amsterdam, 293 p.Google Scholar
  13. Eyre J.K., 1997. Frequency-dependence of magnetic susceptibility for populations of single-domain grains. Geophys. J. Int., 129, 209–211.CrossRefGoogle Scholar
  14. Georgeaud V.M., Rochette P., Ambrosi J.P., Vandamme D. and Williamson D., 1997. Relationship between heavy metals and magnetic properties in a large polluted catchment: the Etang de Berre (south of France). Phys. Chem. Earth, 22, 211–214.CrossRefGoogle Scholar
  15. Goluchowska B.J., 2001. Some factors affecting an increase in magnetic susceptibility of cement dusts. J. Appl. Geophys., 48, 103–112.CrossRefGoogle Scholar
  16. GS+, 2006. Geostatistics for the Environmental Sciences, GS+ Users Guide, V.7. Gamma Design Software, Plainwell, Michigan, USA, 160 pp.Google Scholar
  17. Hanesch M. and Scholger R., 2002. Mapping of heavy metal loadings in soils by means of magnetic susceptibility measurements. Environ. Geol., 42, 857–870, DOI: 10.1007/s00254-002-0604-1.CrossRefGoogle Scholar
  18. Hanesch M., Stanjek H. and Petersen N., 2006. Thermomagnetic measurements of soil iron minerals: the role of organic carbon. Geophys. J. Int., 165, 53–61.CrossRefGoogle Scholar
  19. Harrison R.M. and Jones M., 1995. The chemical composition of airborne particles in the UK atmosphere. Sci. Tot. Environ., 168, 195–214.CrossRefGoogle Scholar
  20. Hoffmann V., Knab M. and Appel E., 1999. Magnetic susceptibility mapping of roadside pollution. J. Geochem. Explor., 66, 313–326.CrossRefGoogle Scholar
  21. Hu X.F., Su Y., Ye R., Li X.G. and Zhang G.L., 2007. Magnetic properties of the urban soils in Shanghai and their environmental implications. Catena, 70, 428–436.CrossRefGoogle Scholar
  22. Hullet L.D. Jr., Weinberger A.J., Nothcutt K.J. and Ferguson M., 1980. Chemical species in fly ash from coal-burning power plants. Science, 210, 1356–1358.CrossRefGoogle Scholar
  23. Hunt A., Jones J. and Oldfield F., 1984. Magnetic measurement and heavy metals in atmospheric particulates of anthropogenic origin. Sci. Tot. Environ., 33, 129–139.CrossRefGoogle Scholar
  24. Hunt C.P., Banerjee S.K., Han J.M., Solheid P.A., Oches E., Sun W.W. and Liu T.S., 1995. Rock magnetic proxies of climate change in the loess palaeosol sequences of the western loess plateau of China. Geophys. J. Int., 123, 232–244.CrossRefGoogle Scholar
  25. Ihl T., Frausto O., Rojas J., Giese S., Goldacker S., Bautista F. and Bocco G., 2007. Identification of geodisasters in the state of Yucatan, Mexico. Neues. Jahrb. Geol. Palaontol., 246, 299–311.CrossRefGoogle Scholar
  26. Isaaks E. and Srivastava R., 1989. Applied Geostatistics. Oxford University Press, Oxforf, U.K.Google Scholar
  27. Jeleñska M., Hasso-Agopsowicz A., Kopcewicz B., Sukhorada A., Tyamina K., Kadzialko-Hofmokl M. and Matviishina Z., 2004. Magnetic properties of the profiles of polluted and non-polluted soils. A case study from Ukraine. Geophys. J. Int., 159, 104–116.CrossRefGoogle Scholar
  28. Jordanova D., Hoffmann V. and Fehr Th., 2004. Mineral magnetic characterization of anthropogenic magnetic phases in the Danube river sediments (Bulgarian part). Earth Planet. Sci. Lett., 221, 71–89.CrossRefGoogle Scholar
  29. Jordanova N., Jordanova D. and Tsacheva T., 2008. Application of magnetometry for delineation of anthropogenic pollution in areas covered by various soil types. Geoderma, 144, 557–571.CrossRefGoogle Scholar
  30. Kapička A., Petrovský E., Ustjak S. and Macháčková K., 1999. Proxy mapping of fly-ash pollution of soils around a coalburning power plant: a case study in the Czech Republic. J. Geochem. Explor., 66, 291–297.CrossRefGoogle Scholar
  31. Kukier U., Fauziah Ishak C., Summer M.E. and Miller W.P., 2003. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut., 123, 255–266.CrossRefGoogle Scholar
  32. Lecoanet H., Léveque F. and Ambrosi J.-P., 2003. Combination of magnetic parameters: an efficient way to discriminate soil-contamination sources (south France). Environ. Pollut., 122, 229–234.CrossRefGoogle Scholar
  33. Lehmann A., David S. and Stahr K., 2008. TUSEC — Technique for Soil Evaluation and Categorization for Natural and Anthropogenic Soils. Hohenheimer Bodenkundliche Hefte, 85. Institute for Soil Science and Land Evaluation, Hohenheim University, Stuttgart, Germany.Google Scholar
  34. Maher B.A., 1986. Characterization of soil by mineral magnetic measurements. Phys. Earth Planet. Inter., 42, 76–92.CrossRefGoogle Scholar
  35. Maher B.A., Moore C. and Matzka J., 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ., 42, 364–373.CrossRefGoogle Scholar
  36. Maiz I., Esnola MV. and Millan E., 1997. Evaluation of heavy metals availability in contaminated soils by a short sequential extraction procedure. Sci. Total Environ., 206, 107–115.Google Scholar
  37. Maiz I., Arambarri I., Garcia R. and Millán E., 2000. Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environ. Pollut., 110, 3–9.CrossRefGoogle Scholar
  38. Matzka J. and Maher B.A., 1999. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmos. Environ., 33, 4565–4569.CrossRefGoogle Scholar
  39. Muxworthy A.R., Matzka J., Fernandez Davila A. and Petersen N., 2003. Magnetic signature of daily sampled urban atmospheric particles. Atmos. Environ., 37, 4163–4169.CrossRefGoogle Scholar
  40. Pacheco Martínez J.I. and Alonzo Salomón L.A., 2003. Caracterización del material calizo de la formación Carrillo Puerto en Yucatán. Ingeniería, 7-1, 7–19 (in Spanish).Google Scholar
  41. Petrovský E. and Ellwood B.B., 1999. Magnetic monitoring of air-, land- and water-pollution. In: Maher B.A. and Thompson R. (Eds.), Quaternary Climates, Environments and Magnetism. Cambridge University Press, Cambridge, UK.Google Scholar
  42. Petrovský E., Kapička A., Jordanova N., Knab M. and Hoffmann V., 2000. Low-field magnetic susceptibility: a proxy method of estimating increased pollution of different environmental systems. Environ. Geol., 39, 312–318.CrossRefGoogle Scholar
  43. Ruiping S. and Cioppa M.T., 2006. Magnetic survey of topsoils in Windsor — Essex County, Canada. J. Appl. Geophys., 60, 201–212.CrossRefGoogle Scholar
  44. SEDEINCO, 2007. Guía del Inversionista. ¿Por qué invertir en Yucatán? Gobierno del Estado de Yucatán (in Spanish,
  45. SEMARNAT, 2005. NORMA Oficial Mexicana NOM-052-SEMARNAT-2005, Que establece las características, el procedimiento de identificación, clasificación y los listados de los residuos peligrosos (in Spanish, %20Mexicanas%20vigentes/NOM%20052_23_JUN_2006.pdf).
  46. Stephens S.R., Alloway B.J., Carter J.E. and Parker A., 2001. Towards the characterisation of heavy metals in dredged canal sediments and an appreciation of ‘availability’: two examples from the UK. Environ. Pollut., 113, 395–401.CrossRefGoogle Scholar
  47. Strzyszcz Z., Magiera T. and Heller F., 1996. The influence of industrial emissions on the magnetic susceptibility of soils in Upper Silesia. Stud. Geophys. Geod., 40, 276–286.CrossRefGoogle Scholar
  48. Sutherland R.A., 2003. Lead in grain size fractions of road-deposited sediment. Environ. Pollut., 121, 229–237.CrossRefGoogle Scholar
  49. Vassilev S.V., 1992. Phase mineralogy studies of solid waste products from coal burning at some Bulgarian thermoelectric power plants. Fuel, 71, 625–633.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2010

Authors and Affiliations

  • Bertha Aguilar Reyes
    • 1
    Email author
  • Francisco Bautista
    • 2
  • Avto Goguitchaichvili
    • 1
  • Ofelia Morton
    • 3
  1. 1.Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica - Sede MichoacánUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  2. 2.Laboratorio de Suelos y Agua, Centro de Investigaciones en Geografía AmbientalUniversidad Nacional Autónoma de MéxicoMoreliaMexico
  3. 3.Laboratorio de Paleomagnetismo, Instituto de GeofísicaUniversidad Nacional Autónoma de MéxicoMéxico D.F.Mexico

Personalised recommendations