Studia Geophysica et Geodaetica

, Volume 55, Issue 1, pp 131–157 | Cite as

New magnetic mineralogy and archaeointensity results from greek kilns and baked clays

  • Vassileios Spatharas
  • Despina Kondopoulou
  • Elina Aidona
  • Konstantinos G. Efthimiadis


Seven archaeological sites in Northern Greece and a pottery assemblage from Ithaki Island (Ionian Sea) have provided material from kilns and a collection of baked clays. The whole dataset consists of 69 samples and covers a period of almost 4000 years. Although the majority of the samples was oriented, only few directions could be obtained, mostly due to small sample size and fragility. Detailed rock magnetic experiments identified magnetite/titano-magnetite and substituted magnetite as the main magnetic minerals. Variable amounts of haematite were detected in some cases. In three out of eight sites, multi-domain grains prevail, whereas single-, pseudo-single domain or mixtures are detected in the remaining five. The classical Thellier-Thellier palaeointensity method was applied to 94 specimens. Following stringent acceptance criteria, 66 results from the 8 sites were considered successful and retained. These new results show a convergence with regional and global compilations and improve the knowledge of the past geomagnetic field behaviour in Greece.


archaeomagnetism fired structures Greece 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aidona E., Kondopoulou D., Alexandrou M. and Ioannidis N., 2010. Archaeomagnetic studies in kilns from N. Greece. Bulletin of the Geological Society of Greece, XLIII(4), 1888–1897.Google Scholar
  2. Aitken M.J., Alcock P.A., Bussell G.D. and Shaw C.J., 1981. Archaeomagnetic determination of the past geomagnetic intensity using ancient ceramics: allowance for anisotropy. Archaeometry, 23, Part 1, 53–64.CrossRefGoogle Scholar
  3. Aitken M.J., Allsop A.L., Bussell G.D., Liritzis Y. and Winter M.B. 1989a. Geomagnetic intensity measurements using bricks from Greek churches of the first and second millennia A.D. Archaeometry, 31, 77–87.CrossRefGoogle Scholar
  4. Aitken M.J., Allsop A.L., Bussell G.D. and Winter M.B. 1989b. Geomagnetic intensity variation during the last 4000 years. Phys. Earth Planet. Inter., 56, 49–58.CrossRefGoogle Scholar
  5. Chauvin A., Garcia Y., Lanos Ph. and Laubenheimer F., 2000. Palaeointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Phys. Earth Planet. Inter., 120, 111–136.CrossRefGoogle Scholar
  6. Coe R., 1967. Paleointensities of the Earth’s magnetic field determined from Tertiary and Quaternary rocks. J. Geophys. Res., 72, 3247–3262.CrossRefGoogle Scholar
  7. Coe R.S., Grommé S. and Mankinen E.A., 1978. Geomagnetic paleointensities from radiocarbondated lava flows on Hawaii and the question of the Pacific nondipole low. J. Geophys. Res., 83, 1740–1756.CrossRefGoogle Scholar
  8. Cui Y.L. and Verosub K., 1995. A mineral magnetic study of some pottery samples: possible implications for sample selection in archaeointensity studies. Phys. Earth Planet. Inter., 91, 261–271.CrossRefGoogle Scholar
  9. Cui Y.L., Verosub K., Roberts A. and Kovacheva M., 1997. Rock magnetic studies of archaeological samples: implications for sample selection for palaeointensity determinations. J. Geomagn. Geoelectr., 49, 567–585.Google Scholar
  10. DeMarco E., 2007. Complete Magnetic and Archaeomagnetic Measurements in Archaeological Sites: Contribution to the SVC for Greece. PhD Thesis, Aristotle University of Thessaloniki, Thessaloniki, 293 pp..Google Scholar
  11. DeMarco E., Spatharas V., Gomez-Paccard M., Chauvin A. and Kondopoulou D., 2008. New archaeointensity results from archaeological sites and variation of the geomagnetic field intensity for the last 7 millennia in Greece. Phys. Chem. Earth, 33, 578–595, DOI: 10.1016/j.pce.2008.02.025.Google Scholar
  12. Donadini F., Korte M. and Constable C.G., 2009. Geomagnetic field for 0-3ka: 1. New data sets for global modeling. Geochem. Geophys. Geosyst., 10, Q06007, DOI: 10.1029/200GC002295.CrossRefGoogle Scholar
  13. Downey W.S. and Tarling D.H., 1984. Archaeomagnetic dating of Santorini volcanic eruptions and fired destruction levels of Late Minoan civilization. Nature, 309, 519–523.CrossRefGoogle Scholar
  14. Downey W.S. and Tarling D.H., 1985. Archaeomagnetic dating of Santorini volcanic eruptions and fired destruction levels in Crete (reply). Nature, 313, 75–76.CrossRefGoogle Scholar
  15. Fabian K., 2001. A theoretical treatment of paleointensity determination experiments on rocks containing pseudo-single or multi domain magnetic particles. Earth Planet. Sci. Lett., 188, 45–58.CrossRefGoogle Scholar
  16. Fabian K., 2003. Statistical theory of weak field thermoremanent magnetisation in multidomain particle ensembles. Geophys. J. Int., 155, 479–488.CrossRefGoogle Scholar
  17. Genevey A. and Gallet Y., 2002. Intensity of the geomagnetic field in western Europe over the past 2000 years: new data from ancient French pottery. J. Geophys. Res., 107(B11), 1–18, DOI: 10.1029/2001JB000701.CrossRefGoogle Scholar
  18. Genevey A., Gallet Y., Constable C.G., Korte M. and Hulot G., 2008. ArcheoInt: An upgraded compilation of geomagnetic field intensity data for the past ten millennia and its application to the recovery of the past dipole moment. Geochem. Geophys. Geosyst., 9, Q04038, DOI: 10.1029/2007GC001881.CrossRefGoogle Scholar
  19. Halgedhal S., Day R. and Fuller M., 1980. The effect of the cooling rate on the intensity of weak field TRM in single domain magnetite. J. Geophys. Res., 85, 3690–3698.CrossRefGoogle Scholar
  20. Hongre L., Hulot G. and Khokhlov A., 1998. An analysis of the geomagnetic field over the past 2000 years. Phys. Earth Plant. Inter., 106, 311–335.CrossRefGoogle Scholar
  21. Jelínek V., 1977. The Statistical Theory of Measuring Anisotropy of Magnetic Susceptibility of Rocks and Its Applications. Geofyzika, Brno, Czech Republic.Google Scholar
  22. Jordanova N., Karloukovski V. and Spatharas V., 1995. Magnetic anisotropy studies on Greek pottery and bricks. Bulgarian Geophysics Journal, 21(4), 49–58.Google Scholar
  23. Jordanova N., Petrovský E. and Kovacheva M., 1997. Preliminary rock magnetic study of archaeomagnetic samples from Bulgarian sites of B.C. time. J. Geomagn. Geoelectr., 49, 543–566.Google Scholar
  24. Jordanova N., Petrovský E., Kovacheva M. and Jordanova D., 2001. Factors determining magnetic enhancement of burnt clay from archaeological sites. J. Archaeol. Sci., 28, 1137–1148.CrossRefGoogle Scholar
  25. Jordanova N., Kovacheva M., Hedley I. and Kostadinova M., 2003. On the suitability of baked clay for archaeomagnetic studies as deduced from detailed rock-magnetic studies. Geophys. J. Int., 153, 146–158.CrossRefGoogle Scholar
  26. Korte M. and Constable C.G., 2005. Continuous geomagnetic field models for the past 7 millenia: 2. CALS7K. Geochem. Geophys. Geosyst., 6, DOI: 10.1029/2004GC000801.Google Scholar
  27. Korte M., Donadini F. and Constable C.G., 2009. Geomagnetic field for 0–3 ka: 2. Revised global time-varying models. Geochem. Geophys. Geosyst., 10, Q06008, DOI: 10.1029/2008GC002297.CrossRefGoogle Scholar
  28. Kovacheva M. and Kanarchev M., 1986. Revised arhaeointensity data from Bulgaria. J. Geomagn. Geoelectr., 38, 1297–1310.Google Scholar
  29. Kovacheva M. and Toshkov A., 1994. Geomagnetic field variations as determined from Bulgarian archaeomagnetic data. Part I: the last 2000 years A.D. Surv. Geophys., 15, 673–701.CrossRefGoogle Scholar
  30. Kovacheva M., Spatharas V. and Liritzis Y., 2000. New archaeointensity results from Greek materials. Archaeometry, 42, 415–429.CrossRefGoogle Scholar
  31. Kovacheva M., Boyadziev Y., Kostadinova-Avramova M., Jordanova N. and Donadini F., 2009a. Updated archaeomagnetic data set of the past 8 millennia from the Sofia laboratory, Bulgaria. Geochem. Geophys. Geosyst., 10, Q05002, DOI: 10.1029/2008GC002347.CrossRefGoogle Scholar
  32. Kovacheva M., Chauvin A., Jordanova N., Lanos Ph. and Karloukovski V., 2009b. Remanence anisotropy effect on the palaeointensity results obtained from various archaeological materials, excluding pottery. Earth Planets Space, 61, 711–723.Google Scholar
  33. Lanos Ph., Le Goff M., Kovacheva M. and Schnepp E., 2005. Hierarchical modelling of archaeomagnetic data and curve estimation by moving average technique. Geophys. J. Int., 160, 440–476.CrossRefGoogle Scholar
  34. Levi S., 1977. The effect of magnetite particle size on paleointensity determinations of the geomagnetic field. Phys. Earth Planet. Inter., 13, 245–259.CrossRefGoogle Scholar
  35. Liritzis Y. and Thomas R., 1980. Palaeointensity and thermoluminiscence measurements on Cretan kilns from 1300 to 2000 B.C. Nature, 283, 54–55.CrossRefGoogle Scholar
  36. Liritzis Y., 1989. Greek archaeointensities; some aspects of reliability and geophysical implications. Earth Moon Planets, 47, 1–13.CrossRefGoogle Scholar
  37. Lodge A. and Holme R., 2008. Towards a new approach to archaeomagnetic dating in Europe using geomagnetic field modelling. Archaeometry, 50, 309–322, DOI: 10.1111/j.1475-4754.2008.00400.x.Google Scholar
  38. Lowrie W. and Fuller M., 1971. On the alternating field demagnetization characteristics of multidomain thermoremanent magnetization in magnetite. J. Geophys. Res., 76, 266339–266349.CrossRefGoogle Scholar
  39. Lowrie W., 1990. Identification of ferromagnetic minerals in a rock by coercivity and unblocking temperature properties. Geophys. Res. Lett., 17, 159–162.CrossRefGoogle Scholar
  40. Nagata T., Arai Y. and Momose K., 1963. Secular variation of the geomagnetic total force during the last 5000 years. J. Geophys. Res., 68, 5277–5281.Google Scholar
  41. O’Reilly W., 1984. Rock and Mineral Magnetism. Chapman and Hall, New York.Google Scholar
  42. Papamarinopoulos S., 1987. Geomagnetic intensity measurements from Byzantine vases in the period between 300 and 1650 yr. A.D. J. Geomagn. Geolectr., 39, 261–270.Google Scholar
  43. Pavón-Carrasco F.J., Osete M.L., Torta J.M. and Gaya-Piqué L.R., 2009. A regional archaeomagnetic model for Europe for the last 3000 years, SCHA.DIF.3K: Applications to archaeomagnetic dating. Geochem. Geophys. Geosyst., 10, Q03013, DOI: 10.1029/2008GC002244.CrossRefGoogle Scholar
  44. Stephenson A., Sadikun S. and Porter D.K., 1986. A theoretical and experimental comparison of the anisotropies of magnetic susceptibility and remanence in rocks and minerals. Geophys. J. R. Astron. Soc., 84, 185–200.Google Scholar
  45. Stober J.C. and Thompson R., 1979. An investigation into the source of magnetic minerals in some Finnish lake sediments. Earth Planet. Sci. Lett., 45, 464–474.CrossRefGoogle Scholar
  46. Spatharas V., Kondopoulou D., Liritzis I. and Tsokas G.N., 2000. Archaeointensity results from two ceramic kilns from N. Greece. J. Balkan Geophys. Soc., 4, 67–72.Google Scholar
  47. Spatharas V., Kondopoulou D. and Eftimiadis K., 2003. Archaeomagnetic dating of archaeological sites in Greece. Proceedings of the 7th European Meeting on Ancient Ceramics (EMAC’03). October 27–31, Lisbon, Portugal.Google Scholar
  48. Spatharas V., 2005. Archeomagnetic and Magnetic Measurements in Archaeological Materials in Macedonia and Thrace (N. Greece). PhD Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece, 179 pp. (in Greek).Google Scholar
  49. Tarling D.H., Kondopoulou D. and Spatharas V., 2004. An archaeomagnetic study of the LM IB Kilns. In: Soles J.S. and Davaras C. (Eds.), Mochlos IC — Period III. Neopalatial Settlement on the Coast: The Artisans’ Quarter and the Farmhouse at Chalinomouri. The Small Finds. Prehistory Monographs, 9, INSTAP Academic Press, Philadelphia, Pennsylvania.Google Scholar
  50. Thomas R.C., 1981. Archaeomagnetism of Greek Pottery and Cretan Kilns. PhD Thesis. Edinburgh University, Edinburgh, U.K.Google Scholar
  51. Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Annales de Géophysique, 15, Fasc. 3 (in French).Google Scholar
  52. Veitch R.J., Hedley I.G. and Wagner J.J., 1984. An investigation of the intensity of the geomagnetic field during roman times using magnetically anisotropic bricks and tiles. Arch. Sc. Genève, 37, Fasc. 3, 359–373.Google Scholar
  53. Walton D., 1984. Re-evaluation of Greek archaeomagnitudes. Nature, 310, 740–743.CrossRefGoogle Scholar
  54. Walton D., 1986. Alteration and its effects on the reproducibility of archaeomagnitudes from Tel-El-Amarna. J. Geomagn. Geoelectr., 38, 1349–1352.Google Scholar
  55. Walton D. and Balhatchet H., 1988. Application of a new technique to Greek archaeomagnitudes. J. Geomagn. Geoelectr., 40, 1503–1510.Google Scholar
  56. Xanthakis J. and Liritzis Y., 1991. Geomagnetic field variations as inferred from archaeomagnetism in Greece and palaeomagnetism in British Lake sediments since 7000 B.C. Publ. Acad. Athens, Athens, Greece, 218 pp.Google Scholar
  57. Zacharias N., 2000. New Techniques on Age Estimation of Ceramic and Calcite Materials Using the Thermoluminescence Dating Method. Ph.D. Thesis, National Technical University of Athens, Athens, Greece, 174 pp.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2011

Authors and Affiliations

  • Vassileios Spatharas
    • 1
  • Despina Kondopoulou
    • 1
  • Elina Aidona
    • 1
  • Konstantinos G. Efthimiadis
    • 2
  1. 1.Department of Geophysics, School of GeologyAristotle University of ThessalonikiThessalonikiGreece
  2. 2.Physics DepartmentAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations