Studia Geophysica et Geodaetica

, Volume 56, Issue 1, pp 35–64 | Cite as

Comparison of the FORT approximation of the coupling ray theory with the Fourier pseudospectral method

  • Ivan Pšenčík
  • Véronique Farra
  • Ekkehart Tessmer
Article

Abstract

The standard ray theory (RT) for inhomogeneous anisotropic media does not work properly or even fails when applied to S-wave propagation in inhomogeneous weakly anisotropic media or in the vicinity of shear-wave singularities. In both cases, the two shear waves propagate with similar phase velocities. The coupling ray theory was proposed to avoid this problem. In it, amplitudes of the two S waves are computed by solving two coupled, frequency-dependent differential equations along a common S-wave ray. In this paper, we test the recently developed approximation of coupling ray theory (CRT) based on the common S-wave rays obtained by first-order ray tracing (FORT). As a reference, we use the Fourier pseudospectral method (FM), which does not suffer from the limitations of the ray method and yields very accurate results. We study the behaviour of shear waves in weakly anisotropic media as well as in the vicinity of intersection, kiss or conical singularities. By comparing CRT and RT results with results of the FM, we demonstrate the clear superiority of CRT over RT in the mentioned regions as well as the dangers of using RT there.

Keywords

coupling ray theory Fourier pseudospectral method first-order ray tracing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bulant P. and Klimeš L., 2002. Numerical algorithm of the coupling ray theory in weakly anisotropic media. Pure Appl. Geophys., 159, 1419–1435.CrossRefGoogle Scholar
  2. Bulant P. and Klimeš L., 2008. Numerical comparison of the isotropic-common-ray and anisotropiccommon-ray approximations of the coupling ray theory. Geophys. J. Int., 175, 357–374.CrossRefGoogle Scholar
  3. Carcione J.M., Kosloff D., Behle A. and Seriani G., 1992. A spectral scheme for wave propagation simulation in 3-D elastic-anisotropic media. Geophysics, 57, 1593–1607.CrossRefGoogle Scholar
  4. Cerjan C., Kosloff D., Kosloff R. and Reshef M., 1985. A non-reflecting boundary condition for discrete acoustic and elastic wave calculation. Geophysics, 50, 705–708.CrossRefGoogle Scholar
  5. Coates R.T. and Chapman C.H., 1990. Quasi-shear wave coupling in weakly anisotropic 3-D media. Geophys. J. Int., 103, 301–320.CrossRefGoogle Scholar
  6. Červený V., 2001. Seismic Ray Theory. Cambridge University Press, Cambridge, U.K.CrossRefGoogle Scholar
  7. Červený V., Klimeš L. and Pšenčík I., 2007. Seismic ray method: recent developments. Adv. Geophys., 48, 1–126.CrossRefGoogle Scholar
  8. Farra V., and Pšenčík I., 2003. Properties of the zero-, first-and higher-order approximations of attributes of elastic waves in weakly anisotropic media. J. Acoust. Soc. Am., 114, 1366–1378.CrossRefGoogle Scholar
  9. Farra V. and Pšenčík I., 2008. First-order ray computations of coupled S waves in inhomogeneous weakly anisotropic media. Geophys. J. Int., 173, 979–989.CrossRefGoogle Scholar
  10. Farra V. and Pšenčík I., 2010a. Coupled S waves in inhomogeneous weakly anisotropic media using first-order ray tracing. Geophys. J. Int., 180, 405–417.CrossRefGoogle Scholar
  11. Farra V. and Pšenčík I., 2010b. First-order reflection/transmission coefficients for unconverted plane P waves in weakly anisotropic media. Geophys. J. Int., 183, 1443–1454.CrossRefGoogle Scholar
  12. Gajewski D. and Pšenčík I., 1990. Vertical seismic profile synthetics by dynamic ray tracing in laterally varying layered anisotropic structures. J. Geophys. Res., 95, 11301–11315.CrossRefGoogle Scholar
  13. Kosloff D. and Baysal E., 1982. Forward modeling by a Fourier method. Geophysics, 47, 1402–1412.CrossRefGoogle Scholar
  14. Kosloff D., Filho A., Tessmer E. and Behle A., 1989. Numerical solution of the acoustic and elastic wave equations by a new rapid expansion method. Geophys. Prospect., 37, 383–394.CrossRefGoogle Scholar
  15. Kravtsov Yu.A., 1968. Quasiisotropic approximation to geometrical optics. Dokl. AN SSSR, 183(1), 74–77 (in Russian).Google Scholar
  16. Kravtsov Yu.A. and Orlov Yu.I., 1990. Geometrical Optics of Inhomogeneous Media. Springer Verlag, Heidelberg, Germany.CrossRefGoogle Scholar
  17. Pšenčík I. and Dellinger J., 2001. Quasi-shear waves in inhomogeneous weakly anisotropic media by the quasi-isotropic approach: a model study. Geophysics, 66, 308–319.CrossRefGoogle Scholar
  18. Pšenčík I. and Teles T.N., 1996. Point source radiation in inhomogeneous anisotropic structures. Pure Appl. Geophys., 148, 591–623.CrossRefGoogle Scholar
  19. Rümpker G. and Kendall J.M., 2002. Maslov-propagator seismogram for weakly anisotropic media. Geophys. J. Int., 150, 23–36.CrossRefGoogle Scholar
  20. Rümpker G. and Silver P.G., 2000. Calculating splitting parameters for plume-type anisotropic structures of the upper mantle. Geophys. J. Int., 143, 507–520.CrossRefGoogle Scholar
  21. Shearer P.M., and Chapman C.H., 1989. Ray tracing in azimuthally anisotropic media — I. Results for models of aligned cracks in the upper crust. Geophys. J. Int., 96, 51–64.CrossRefGoogle Scholar
  22. Schoenberg M. and Helbig K., 1997. Orthorhombic media: Modeling elastic wave behavior in a vertically fractured earth. Geophysics, 62, 1954–1974.CrossRefGoogle Scholar
  23. Thomson C.J., Kendall J.M. and Guest W.S., 1992. Geometrical theory of shear wave splitting: corrections to ray theory for interference in isotropic/anisotropic transitions. Geophys. J. Int., 108, 339–363.CrossRefGoogle Scholar
  24. Vavryčuk V., 2003. Behavior of rays near singularities in anisotropic media. Phys. Rev. B, 67, 054105.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2012

Authors and Affiliations

  • Ivan Pšenčík
    • 1
  • Véronique Farra
    • 2
  • Ekkehart Tessmer
    • 3
  1. 1.Institute of GeophysicsAcad. Sci. of Czech RepublicPraha 4Czech Republic
  2. 2.Institut de Physique du Globe de Paris, Sorbonne Paris CitéUniversité Paris Diderot, UMR 7154 CNRSParisFrance
  3. 3.Institute of GeophysicsHamburgGermany

Personalised recommendations