Experimental study of fly-ash migration by using magnetic method

  • Aleš Kapička
  • Radka Kodešová
  • Eduard Petrovský
  • Zdeněk Hůlka
  • Hana Grison
  • Martin Kaška
Article

Abstract

Several studies have shown that magnetic measurements can be used in assessing soil contamination due to atmospheric deposition of pollutants. Reliable spatial mapping of magnetic susceptibility of soils assumes high temporal stability of deposited particles, accumulated in top-soil horizons. One of the main methodological concerns is whether the migration of deposited anthropogenic ferrimagnetic particles may bias the measured values. Measurements carried out on high-porosity (sandy) soils, or on soils with a very variable water regime may yield inconsistent values of top-soil magnetic susceptibility as the indicator of contamination. This study focuses on the laboratory examination of migration of fly ashes from a coal-burning power plant in sands of different porosity and under a simulated rain regime. Columns of sand of different grain sizes, placed in plastic cylinders, were contaminated on the surface by the fly ash. The vertical migration of magnetic particles was monitored using measurements of magnetic susceptibility with an SM400 Kappameter. Calibration measurements in the water environment showed an erroneous performance and resulted in the technical improvement of the used susceptibility meter (Model 2009). Our results show that the vertical distribution of flyash particles deposited on fine sand is very stable even after repeated rain simulation. The peak value of magnetic susceptibility is located in a stable position a few millimeters under the surface. Hence, standard top-soil magnetic mapping is in such a case reliable and fully representative. Contrary to that, in case of coarse sand, the peak value of magnetic susceptibility migrates by more than 10 cm. The results will be further used for numerical modeling of contaminant transport in porous media.

Keywords

environmental magnetism fly-ash migration magnetic susceptibility SM400 Kappameter 

References

  1. Arrighini G.P., Maestro M. and Moccia R., 1968. Magnetic properties of polyatomic molecules: magnetic susceptibility of H2O, NH3, CH4, H2O2. J. Chem. Phys., 49, 882–889.CrossRefGoogle Scholar
  2. Blaha U., Appel E. and Stanjek H., 2008. Determination of anthropogenic boundary depth in industrially polluted soil and semi-quantification of heavy metal loads using magnetic susceptibility. Environ. Pollut., 156, 278–289.CrossRefGoogle Scholar
  3. Bradford S.A., Yates S.R., Bettahar M. and Simunek J., 2002. Physical factors affecting the transport and fate of colloids in saturated porous media. Water Resour. Res., 38, 1327–1336.CrossRefGoogle Scholar
  4. Dearing J.A., Bird P.M., Dann R.J.L. and Benjamin S.F., 1997. Secondary ferrimagnetic minerals in Welsh soils: a comparison of mineral magnetic detection methods and implications for mineral formation. Geophys. J. Int., 130, 727–736.CrossRefGoogle Scholar
  5. Evans T.E. and Heller F., 2003, Environmental Magnetism. Academic Press — Elsevier, San Diego, California.Google Scholar
  6. Fialová H., Maier G., Petrovský E., Kapička A., Boyko T., Scholger R. and MAGPROX Team, 2006. Magnetic properties of soils from sites with different geological and environmental settings. J. Appl. Geophys., 59, 273–283.CrossRefGoogle Scholar
  7. Garambois S., Sénéchal P. and Perroud H., 2002. On the use of combined geophysical methods to assess water content and water conductivity of near-surface formations. J. Hydrol., 259, 32–48.CrossRefGoogle Scholar
  8. Gautam P., Blaha U. and Appel E., 2005. Magnetic susceptibility of dust-loaded leaves as a proxy of traffic-related heavy metal pollution in Kathmandu city, Nepal. Atmos. Environ., 39, 2201–2211.CrossRefGoogle Scholar
  9. Goluchowska B.J., 2001. Some factors affecting an increase in magnetic susceptibility of cement dusts. J. Appl. Geophys., 48, 103–112.CrossRefGoogle Scholar
  10. Hanesch M., Scholger R. and Rey D., 2003. Mapping dust distribution around an industrial site by measuring magnetic parameters of tree leaves. Atmos. Environ., 37, 5125–5133.CrossRefGoogle Scholar
  11. Hanesch M. and Scholger R., 2005. The influence of soil type on the magnetic susceptibility measured throughout soil profiles. Geophys. J. Int., 161, 50–56.CrossRefGoogle Scholar
  12. Hanesch M., Rantitsch G., Hemetsberger S. and Scholger R., 2007. Lithological and pedological influences on the magnetic susceptibility of soil: Their consideration in magnetic pollution mapping. Sci. Tot. Environ., 382, 351–363.CrossRefGoogle Scholar
  13. Hay K.L., Dearing J.A., Baban S.M.J. and Loveland P.J, 1997. A preliminary attempt to identify atmospherically-derived pollution particles in English topsoils from magnetic susceptibility measurements. Phys. Chem. Earth, 22, 207–210.CrossRefGoogle Scholar
  14. Heller F., Strzyszcz Z. and Magiera T., 1998. Magnetic record of industrial pollution in forest soils of Upper Silesia, Poland. J. Geophys. Res., 103, 7767–17774.CrossRefGoogle Scholar
  15. Jordanova D. and Jordanova N., 1999. Magnetic characteristics of different soil types from Bulgaria. Stud. Geophys. Geod., 43, 303–318.CrossRefGoogle Scholar
  16. Jordanova D., Jordanova N. and Hoffmann V. 2006. Magnetic mineralogy and grain-size dependence of hysteresis parameters of single spherules from industrial waste products. Phys. Earth Planet. Inter., 154, 255–265.CrossRefGoogle Scholar
  17. Kapička A., Jordanova N., Petrovský E. and Ustjak S., 2000. Magnetic stability of power-plant fly ash in different soil solutions. Phys. Chem. Earth A, 25, 431–436.CrossRefGoogle Scholar
  18. Kapička A., Petrovský E., Ustjak S. and Macháčková K., 1999. Proxy mapping of fly-ash pollution of soils around a coal-burning power plant: a case study in the Czech Republic. J. Geochem. Explor., 66, 291–297.CrossRefGoogle Scholar
  19. Kapička A., Petrovský E., Fialová H., Podrázský V. and Dvořák I., 2008a. High resolution mapping of anthropogenic pollution in the Giant Mountains National Park using soil magnetometry. Stud. Geophys. Geod., 52, 271–284.CrossRefGoogle Scholar
  20. Kapička A., Petrovský E., Fialová H. and Kodešová R., 2008b. Factors influencing reliability of magnetic pollution mapping — a review. Advances in Geosciences, 20 (Solid Earth), 273–282. World Scientific Publishing Co. Pte. Ltd., Singapore.Google Scholar
  21. Kim W., Doh S.J., Park Y.H. and Yun S.T., 2007. Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmos. Environ., 41, 7627–7641.CrossRefGoogle Scholar
  22. Kodešová R. and Kapička A., 2009. Micromorphology use for visualization of fly-ash distribution in sandy material. Geophys. Res. Abstr., 11, EGU2009–6351.Google Scholar
  23. Kodešová R., Kapička A., Lebeda J., Grison H., Kočárek M. and Petrovský E., 2011. Numerical simulation of fly-ash transport in sandy materiál using HYDRUS-1D. Geophys. Res. Abstr., 13. EGU2011-3111.Google Scholar
  24. Kukier U., Ishak C.F., Sumner E. and Miller W.P., 2003. Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ. Pollut., 123, 255–266.CrossRefGoogle Scholar
  25. Liu Q.S., Zeng Q.L., Yang T., Qiu N. and Chan L.S., 2009. Magnetic properties of street dust from Chibi City, Hubei Province, China: Its implications for urban environment J. Earth Sci., 20, 848–857.CrossRefGoogle Scholar
  26. Lu S.G., Wang H.Y. and Bai S.Q., 2009. Heavy metal contents and magnetic susceptibility of soils along an urban-rural gradient in rapidly growing city of eastern China. Environ. Monit. Assess., 155, 91–101.CrossRefGoogle Scholar
  27. Magiera T. and Strzyszcz Z., 2000. Ferrimagnetic minerals of anthropogenic origin in soils of some Polish national parks. Water Air Soil Pollut., 124, 37–48.CrossRefGoogle Scholar
  28. Magiera T., Strzyszcz Z. and Kostecki M., 2002. Seasonal changes of magnetic susceptibility in sediments from lake Zywiec (south Poland). Water Air Soil Pollut., 141, 55–71.CrossRefGoogle Scholar
  29. Magiera T., Strzyszcz Z., Kapička A., Petrovský E. and MAGPROX Team, 2006. Discimination of lithogenic and anthropogenic influences on topsoil magnetic susceptibility in Central Europe. Geoderma, 130, 299–311.CrossRefGoogle Scholar
  30. Magiera T. and Zawadzki J., 2007. Using of high-resolution topsoil magnetic screening for assessment of dust deposition: comparison of forest and arable selil datasets. Environ. Monit. Assess., 125, 19–28.CrossRefGoogle Scholar
  31. Maier G., Scholger R. and Schon J., 2006. The influence of soil moisture on magnetic susceptibility measurements. J. Appl. Geophys., 59, 162–175.CrossRefGoogle Scholar
  32. Matzka J. and Maher B.A., 1999. Magnetic biomonitoring of roadside tree leaves: identification of spatial and temporal variations in vehicle-derived particulates. Atmos. Environ., 33, 4565–4569.CrossRefGoogle Scholar
  33. Moreno E., Sagnotti L., Dinares-Turell J., Winkler A. and Cascella A., 2003. Biomonitoring of traffic air pollution in Rome using magnetic properties of tree leaves. Atmos. Environ., 37, 2967–2977.CrossRefGoogle Scholar
  34. Murrell J.N. and Jenkins A.D., 1994. Properties of Liquids and Solutions, 2nd Ed. John Wiley & Sons, Chichester, England.Google Scholar
  35. Petrovský E., Kapička A., Jordanova N., Knab M. and Hoffmann V., 2000. Magnetic susceptibilitya proxy method of estimating increased pollution of different environmental systems. Environ. Geol., 39, 312–318.CrossRefGoogle Scholar
  36. Petrovský E., Hůlka Z., Kapička A. and MAGPROX Team, 2004. A new tool for in situ measurements of the vertical distribution of magnetic susceptibility in soils as basis for mapping deposited dust. Environ. Technol., 25, 1021–1029.CrossRefGoogle Scholar
  37. Petrovský E., Kapička A., Font E. and Silva P.F., 2010. Where is natural background in modern environmental magnetism? Eos Trans. AGU, 91(26), GP14A–08.Google Scholar
  38. Phillips J.D. and Lorz C., 2008. Origins and implications of soil layering. Earth Sci. Rev., 89, 144–155.CrossRefGoogle Scholar
  39. Sagnotti L., Taddeucci J., Winkler A. and Cavallo A., 2009. Compositional, morphological, and hysteresis characterization of magnetic airborne particulate matter in Rome, Italy. Geochem. Geophys. Geosyst., 10, Q08Z06, DOI: 10.1029/2009GC002563.CrossRefGoogle Scholar
  40. Sharma A.P. and Tripathi B.D., 2008. Magnetic mapping of fly-ash pollution and heavy metals from soil samples around a point source in a dry tropical environment Environ. Monit. Assess., 138, 31–39.CrossRefGoogle Scholar
  41. Shilton V.F., Booth C.A., Smith J.P., Giess P., Mitchell D.J. and Williams C.D., 2005. Magnetic properties of urban street dust and their relationship with organic matter, content in the West Midlands, UK. Atmos. Environ., 39, 3651–3659.CrossRefGoogle Scholar
  42. Spiteri C., Kalinski V., Rosler W., Hoffmann V., Appel E. and MAGPROX Team, 2005. Magnetic screening of a pollution hotspot in the Lausitz area, Eastern Germany: correlation analysis between magnetic proxies and heavy metal contamination in soils. Environ. Geol., 49, 1–9.CrossRefGoogle Scholar
  43. Strzyszcz Z. and Magiera T., 2001. Record of industrial pollution in Polish ombrotrophic peat bogs. Phys. Chem. Earth A, 26, 859–866.CrossRefGoogle Scholar
  44. Szonyi M., Sagnotti L. and Hirt A.M., 2008. A refined biomonitoring study of airborne particulate matter pollution in Rome, with magnetic measurements on Quercus Ilex tree leaves. Geophys. J. Int., 173, 127–141.CrossRefGoogle Scholar
  45. Tonneijck F.H. and Jongmans A.G., 2008. The influence of bioturbation on the vertical distribution of soil organic matter in volcanic ash soils: a case study in northern Ecuador. Eur. J. Soil Sci., 59, 1063–1075.CrossRefGoogle Scholar
  46. van Oorschot I.H.M. and Dekkers M.J., 1999. Dissolution behaviour of fine-grained magnetite and maghemite in the citrate-bicarbonate-dithionite extraction method. Earth Planet. Sci. Lett., 167, 283–295.CrossRefGoogle Scholar
  47. Zhao Y.C., Zhang J.Y., Sun J.M., Bai X.F. and Zheng C.G., 2006. Mineralogy, chemical composition, and microstructure of ferrospheres in fly ashes from coal combustion. Energy Fuels, 20, 490–1497.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2011

Authors and Affiliations

  • Aleš Kapička
    • 1
  • Radka Kodešová
    • 2
  • Eduard Petrovský
    • 1
  • Zdeněk Hůlka
    • 3
  • Hana Grison
    • 1
  • Martin Kaška
    • 4
  1. 1.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic
  2. 2.Department of Soil Sciences and Soil ProtectionCzech University of Life SciencesPraha 6Czech Republic
  3. 3.ZHInstrumentsBrnoCzech Republic
  4. 4.SYNPO a.s.PardubiceCzech Republic

Personalised recommendations