Studia Geophysica et Geodaetica

, Volume 56, Issue 1, pp 215–230 | Cite as

Sea level variability at Antalya and Menteş tide gauges in Turkey: atmospheric, steric and land motion contributions

  • Mehmet Simav
  • Hasan Yildiz
  • Ali Türkezer
  • Onur Lenk
  • Emin Özsoy
Article
  • 177 Downloads

Abstract

Sea level trends and interannual variability at Antalya and Menteş tide gauges are investigated during the 1985–2001 period, quantifying the roles of atmospheric, steric and local land motion contributions. Tide gauge sea level measurements, temperature/salinity climatologies and GPS data are used in the analyses and the results are compared with the output of a barotropic model forced by atmospheric pressure and wind. The overall sea level trends at two tide gauges collocated with GPS are in the range of 5.5 to 7.9 mm/yr during the study period, but showing different behaviour in the sub-periods 1985–1993 and 1993–2001 due to variations in the contributing factors both in space and time. After the removal of the atmospheric forcing and steric contribution from sea level records, the resulting trends vary between 1.9 to 4.5 mm/yr in Antalya and −1.2 to −11.6 mm/yr in Menteş depending on the period considered. Vertical land movement estimated from GPS data seems to explain the high positive residual trend in Antalya during the whole period. On the other hand, the source of the highly negative sea level trend of about −14 mm/yr in Menteş during 1985–1993 could not be resolved with the available datasets. Interannual variability of wind and atmospheric pressure appear to dominate the sea level at both tide gauges during the study period. Atmospheric and steric contributions together account for ∼50% of the total sea level variance at interannual time scales. Mass induced sea level variations which were not considered in this study may help to close the sea level trend budgets as well as to better explain the interannual sea level variance.

Keywords

coastal sea level trend interannual sea level variation atmospheric contribution steric effect GPS vertical land movement 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altamimi Z., Boucher C. and Sillard P., 2002. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. J. Geophys. Res., 107(B10), 2214.CrossRefGoogle Scholar
  2. Alvarez-Fanjul E., Pérez B. and Rodríguez I., 1997. A description of the tides in the Eastern North Atlantic. Prog. Oceanogr., 40, 217–244.CrossRefGoogle Scholar
  3. Blewitt G. and Lavallée D., 2002. Effect of annual signals on geodetic velocity. J. Geophys. Res., 107(B7), 2145.CrossRefGoogle Scholar
  4. Boehm J., Niell A., Tregoning P. and Schuh H., 2006. Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophys. Res. Lett., 33, L07304.CrossRefGoogle Scholar
  5. Boehm J., Heinkelmann R. and Schuh H., 2007. Short Note: A global model of pressure and temperature for geodetic applications. J. Geodesy, 81, 679–683.CrossRefGoogle Scholar
  6. Calafat F.M., Marcos M. and Gomis D., 2010. Mass contribution to Mediterranean Sea level variability for the period 1948–2000. Glob. Planet. Change, 73, 193–201.CrossRefGoogle Scholar
  7. Cazenave A., Cabanes C., Dominh K. and Mangiarotti S., 2001. Recent sea level changes in the Mediterranean Sea revealed by TOPEX/POSEIDON satellite altimetry. Geophys. Res. Lett., 28, 1607–1610.CrossRefGoogle Scholar
  8. Criado-Aldeanueva F., Del Río Vera J. and García-Lafuente J., 2008. Steric and massinduced Mediterranean sea level trends from 14 years of altimetry data. Glob. Planet. Change, 60, 563–575.CrossRefGoogle Scholar
  9. Dow J.M., Neilan R.E. and Rizos C., 2009. The international GNSS service in a changing landscape of Global Navigation Satellite Systems. J. Geodesy, 83, 191–198.CrossRefGoogle Scholar
  10. Fenoglio-Marc L., 2002. Long-term sea level change in the Mediterranean Sea from multi-satellite altimetry and tide gauges. Phys. Chem. Earth, 27, 1419–1431.CrossRefGoogle Scholar
  11. Fenoglio-Marc L., Dietz C. and Groten E., 2004. Vertical Land Motion in the Mediterranean Sea from Altimetry and Tide Gauge Stations. Mar. Geod., 27, 683–701.CrossRefGoogle Scholar
  12. García-Sotillo M., Ratsimandresy A.W., Carretero J.C., Bentamy A., Valero F. and González-Rouco F., 2005. A high-resolution 44-year atmospheric hindcast for the Mediterranean Basin: contribution to the regional improvement of global reanalysis. Clim. Dyn., 25, 219–236.CrossRefGoogle Scholar
  13. Gomis D., Ruiz S., Sotillo M.G., Alvarez-Fanjul E. and Terradas J., 2008. Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Glob. Planet. Change, 63, 215–229.CrossRefGoogle Scholar
  14. Guedes Soares C., Carretero Albiach J.C., Weisse R. and Alvarez-Fanjul E., 2002. A 40 years hindcast of wind, sea level and waves in European waters. In: Proceedings of the 21st International Conference on Offshore Mechanics and Artic Engineering, 2. American Society of Mechanical Engineers, New York, OMAE2002-SR28604, ISBN: 0-7918-3612-6, 669–675, DOI: 10.1115/OMAE2002-28604.Google Scholar
  15. Herring T.A., King R.W. and Mcclusky S.C., 2006a. GAMIT Reference Manual, GPS Analysis at MIT, Release 10.3. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA (http://shadow.eas.gatech.edu/~anewman/classes/MGM/GAMIT/GAMIT_Ref_10.3.pdf).Google Scholar
  16. Herring T.A., King R.W. and Mcclusky, S.C., 2006b. GLOBK Reference Manual, Global Kalman Filter VLBI and GPS Analysis Program, Release 10.3. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA (http://geophysics.eas.gatech.edu/people/anewman/classes/MGM/GAMIT/GLOBK_Ref_10.3.pdf).Google Scholar
  17. Holgate S.J. and Woodworth P.L., 2004. Evidence of enhanced coastal sea-level rise during the 1990s. Geophys. Res. Lett., 31, L07305.CrossRefGoogle Scholar
  18. Holgate S.J., 2007. On the decadal rates of sea level change during the twentieth century. Geophys. Res. Lett., 34, L01602.CrossRefGoogle Scholar
  19. Ishii M. and Kimoto M., 2009. Reevaluation of Historical Ocean Heat Content Variations with Time-Varying XBT and MBT Depth Bias Corrections. J. Oceanogr., 65, 287–299.CrossRefGoogle Scholar
  20. Malanotte-Rizzoli P., Manca B.B., D’Alcala M.R., Theocharis A., Brenner S., Budillon G. and Özsoy E., 1999. The Eastern Mediterranean in the 80s and in the 90s: the big transition in the intermediate and deep circulations. Dynam. Atmos. Oceans, 29, 365–395.CrossRefGoogle Scholar
  21. Mao A., Harrison C.G.A. and Dixon T.H., 1999. Noise in GPS coordinate time series. J. Geophys. Res., 104(B2), 2797–2818CrossRefGoogle Scholar
  22. Marcos M. and Tsimplis M.N., 2008. Coastal sea level trends in Southern Europe. Geophys. J. Int., 175, 70–82.CrossRefGoogle Scholar
  23. Mccarthy D. and Petit G., 2004. IERS Conventions (2003). IERS Tech. Note 32, Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt am Main, Germany, 127 pp.Google Scholar
  24. Peltier W.R., 2004. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) Model and GRACE. Ann. Rev. Earth Planet. Sci. Lett., 32, 111–149.CrossRefGoogle Scholar
  25. Roether W., Manca B.B., Klein B., Bregant D., Georgopoulos D., Beitzel V., Kovacevic V. and Luchetta A., 1996. Recent changes in Eastern Mediterranean deep waters. Science, 271, 333–335.CrossRefGoogle Scholar
  26. Solomon S., Qin D., Manning M., Chen Z., Marquis M., Averyt K.B., Tignor M. and Miller H.L., 2007: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, U.K.Google Scholar
  27. Teferle F.N., Bingley R.M., Williams S.D.P., Baker T.F. and Dodson A.H., 2006. Using continuous GPS and absolute gravity to separate vertical land movements and changes in sea-level at tidegauges in the UK. Philos. Trans. R. Soc. A-Math. Phys. Eng. Sci., 364, 917–930.CrossRefGoogle Scholar
  28. Tsimplis M.N. and Josey S.A., 2001. Forcing of the Mediterranean Sea by atmospheric oscillations over the North Atlantic. Geophys. Res. Lett., 28, 803–806.CrossRefGoogle Scholar
  29. Tsimplis M.N. and Rixen M., 2002. Sea level in the Mediterranean Sea: the contribution of temperature and salinity changes. Geophys. Res. Lett., 29, 2136.CrossRefGoogle Scholar
  30. Tsimplis M.N., Álvarez-Fanjul E., Gomis D., Fenoglio-Marc L. and Pérez B., 2005. Mediterranean Sea level trends: atmospheric pressure and wind contribution. Geophys. Res. Lett., 32, L20602.CrossRefGoogle Scholar
  31. Tsimplis M.N., Marcos M., Somot S. and Barnier B., 2008. Sea level forcing in the Mediterranean Sea between 1960–2000. Glob. Planet. Change, 63, 325–332.CrossRefGoogle Scholar
  32. Tsimplis M.N., Marcos M., Colin J., Somot S., Pascual A. and Shaw A.G.P., 2009. Sea level variability in the Mediterranean Sea during the 1990s on the basis of two 2d and one 3d model. J. Mar. Syst., 78, 109–123.CrossRefGoogle Scholar
  33. Vigo I., Garcia D. and Chao B.F., 2005. Change of sea level trend in the Mediterranean and Black seas. J. Mar. Res., 63, 1085–1100.CrossRefGoogle Scholar
  34. Williams S.D.P., 2003. The effect of coloured noise on the uncertainties of rates estimated from geodetic time series. J. Geodesy, 76, 483–494.CrossRefGoogle Scholar
  35. Williams S.D.P., Bock Y., Fang P., Jamason P., Nikolaidis R.M., Prawirodirdjo L., Miller M. and Johnson, D.J., 2004. Error analysis of continuous GPS position time series. J. Geophys. Res., 109, B03412.CrossRefGoogle Scholar
  36. Williams S.D.P., 2008. CATS: GPS coordinate time series analysis software. GPS Solut., 12, 147–153.CrossRefGoogle Scholar
  37. Wöppelmann G., Martin Miguez B., Bouin M.N. and Altamimi Z., 2007. Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide. Glob. Planet. Change, 57, 396–406.CrossRefGoogle Scholar
  38. Zhang J., Bock Y., Johnson H., Fang P., Williams S., Genrich J., Wdowinski S. and Behr J., 1997. Southern California Permanent GPS Geodetic Array: Spatial filtering of daily positions for estimating coseismic and postseismic displacements induced by the 1992 Landers earthquake. J. Geophys. Res., 102(B8), 18057–18070.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2012

Authors and Affiliations

  • Mehmet Simav
    • 1
  • Hasan Yildiz
    • 1
  • Ali Türkezer
    • 1
  • Onur Lenk
    • 1
  • Emin Özsoy
    • 2
  1. 1.General Command of MappingTip Fakultesi CaddesiDikimevi, AnkaraTurkey
  2. 2.Institute of Marine SciencesMiddle East Technical UniversityErdemli, MersinTurkey

Personalised recommendations