Studia Geophysica et Geodaetica

, Volume 56, Issue 1, pp 249–267 | Cite as

Three-dimensional velocity model of the crust of the Bohemian Massif and its effects on seismic tomography of the upper mantle

  • Hana Karousová
  • Jaroslava Plomerová
  • Vladislav Babuška
Article

Abstract

We have compiled a representative three-dimensional P-velocity model of the crust of the Bohemian Massif (BM) to provide a basis for removing effects of the crustal structure in teleseismic tomography of the upper mantle. The model is primarily based on recently published 2D velocity models from findings of wide-angle refraction and near-vertical reflection seismic profiles of CELEBRATION 2000, ALP 2002, and SUDETES 2003 experiments. The best fitting 3D model of the BM crust (NearNeighbour model) is complemented by velocities according to the reference Earth model at sites where data are sparse, which precludes creating artificial heterogeneities that are products of interpolation method. To test the model, we have performed tomographic inversions of the P-wave travel times measured during the BOHEMA II experiment and compared the results obtained with and without crustal corrections. The tests showed that the presented crustal model decreases magnitudes of velocity perturbations leaking from the crust to the mantle in the western part of the BM. The tomographic images also indicated a highvelocity anomaly in the lower crust or just beneath the crust in the Brunovistullian unit. Such anomaly is not described by our model of the crust since no seismic profile intersects this part of the unit. The tests also indicated that crustal corrections are of the great importance especially for interpretations of the uppermost mantle down to depths of about 100 km.

Keywords

crustal structure seismic methods Bohemian Massif teleseismic tomography 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aki K., Christoffersson A. and Husebye E.S., 1977. Determination of 3-dimensional seismic structure of lithosphere. J. Geophys. Res., 82(B2), 277–296.CrossRefGoogle Scholar
  2. Babuška V., Plomerová J., Vecsey L., Jedlička P. and Růžek B., 2005. Ongoing passive seismic experiments unravel deep lithosphere structure of the Bohemian Massif. Stud. Geophys. Geod., 49, 423–430.CrossRefGoogle Scholar
  3. Behr H.J., Dürbaum H.J. and Bankwitz P., 1994. Crustal structure of the Saxothuringian Zone: Results of the deep seismic profile MVE-90 (East). Z. Geol. Wiss., 22, 647–769.Google Scholar
  4. Beránek B., Dudek A. and Zounková M., 1975. Velocity models of the crust in the Bohemian Massif and the Western Carpathians (Rychlostní modely stavby zemské kůry v Českém masívu a Západních Karpatech). J. Geol. Sci. Appl. Geophys. (Sborník geologických věd, UŽitá Geofyzika), 13, 7–17 (in Czech).Google Scholar
  5. Brückl E., Blebinhaus F., Gosar A., Grad M., Guterch A., Hrubcová P., Keller G., Majdański M., Šumanovac F., Tiira T., Yliniemi J., Hegedüs E. and Thybo H., 2007. Crustal structure due collisional and escape tectonics in the eastern Alps region based on profiles Alp01 and Alp02 from the Alp 2002 seismic experiment. J. Geophys. Res., 112, B06308, DOI: 10.1029/2006JB004687.CrossRefGoogle Scholar
  6. Dallmeyer R.D., Franke W. and Weber K. (Eds.), 1995. Pre-Permian Geology of Central and Eastern Europe. Springer-Verlag, Berlin, Heidelberg, New York.Google Scholar
  7. Dudek A., 1980. The crystalline basement block of the outer Carpathians in Moravia: Bruno-Vistullicum. Rozpravy Čs. Akad. Věd, 90, 1–85 (in Czech).Google Scholar
  8. Enderle U., Schuster K., Prodehl C., Schulz A. and Bribach J., 1998. The refraction seismic experiment GRANU95 in the Saxothuringian belt, southeastern Germany. Geoph. J. Int., 133, 245–259.CrossRefGoogle Scholar
  9. Evans J.R. and Achauer U., 1993. Teleseismic velocity tomography using the ACH method: theory and application to continentalscale studies. In: Iyer H.M. and Hirahara K. (Eds.), Seismic Tomography. Chapman and Hall, London, U.K., 319–360.Google Scholar
  10. Franke W., 2000. The mid-European segment of the Variscides: tectonostratigraphic units, terrane boundaries and plate tectonic evolution. In: Franke W., Haak V., Oncken O. and Tanner D. (Eds.), Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol. Soc. London Spec. Publ. 179, London, U.K., 35–61.Google Scholar
  11. Grad M., Guterch A., Mazur S., Keller G.R., Špičák A., Hrubcová P. and Geissler W., 2008. Lithosperic structure of the Bohemian Massif and adjacent Variscian belt in central Europe based on profile S01 from SUDETES 2003 experiment. J. Geophys. Res., 113, B10304, DOI: 10.1029/2007JB005497.CrossRefGoogle Scholar
  12. Grad M., Tiira T. and ESC Working Group, 2009. The Moho depth map of the European Plate. Gephys. J. Int., 176, 279–292.CrossRefGoogle Scholar
  13. Geissler W., Plenefisch T. and Kind R., 2005. The Moho structure in the western Eger Rift: A receiver function experiment. Stud. Geophys. Geod., 44, 188–194.CrossRefGoogle Scholar
  14. Heuer B., Geissler W. and Kind R., 2006. Seismic evidence for asthenospheric updoming beneath the western Bohemian Massif, central Europe. Geophys. Res. Lett., 33, L05311, DOI: 10.1029/2005GL025158.CrossRefGoogle Scholar
  15. Hrubcová P., Sroda P., Špičák A., Guterch A., Grad M., Keller G.R., Brückl E. and Thybo H., 2005. Crustal and uppermost mantle stucture of the Bohemian Massif based on CELEBRATION 2000 data. J. Geophys. Res., 110, B11305, DOI: 10.1029/2004JB003080.CrossRefGoogle Scholar
  16. Hrubcová P. and Sroda P., 2008. Crustal structure at the easternmost termination of the Variscan belt based on CELEBRATION 2000 and ALP 2002 data. Tectonophysics, 460, 55–75.CrossRefGoogle Scholar
  17. Hrubcová P. and Geissler W., 2009. The crust-mantle transition and the Moho beneath the Vogtland/West Bohemian region in the light of different seismic methods. Stud. Geophys. Geod., 53, 275–294.CrossRefGoogle Scholar
  18. Julia J., Ammon C.J., Herrmann R.B. and Correig A.M., 2000. Joint inversion of the receiver function and the surface-wave dispersion observations. Geophys. J. Int., 143, 99–112.CrossRefGoogle Scholar
  19. Kalvoda J., Bábek O., Fatka O., Leichmann J., Melichar R., Nehyba S. and Špaček P., 2008. Brunovistulian terrane (Bohemian Massif, central Europe) from Late Proterozoic to late Paleozoic: a review. Int. J. Earth Sci., 97, 497–518.CrossRefGoogle Scholar
  20. Karousová H., 2008. Three-Dimensional Velocity Model of Crust beneath the Bohemian Massif and Its Effects on Results of Teleseismic Tomography of Upper Mantle. Master Thesis, Charles University, Prague, Czech Republic (in Czech).Google Scholar
  21. Kennett B.L.N. and Engdahl E.R., 1991. Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429–465.CrossRefGoogle Scholar
  22. Kossmat F., 1927. Gliederung des varistischen Gebirgsbaues. Abhandlungen des Sächsischen Geologischen Landesamtes, 1, 1–39 (in German).Google Scholar
  23. Koulakov I., Kaban M.K., Tesauro M. and Cloetingh S., 2009. P- and S-velocity anomalies in the upper mantle beneath Europe from tomographic inversion of ISC data. Geophys. J. Int., 179, 345–366.CrossRefGoogle Scholar
  24. Linnemann U., Gemmlich M., Tichomirowa M., Buschmann B., Nasdala L., Jonas P., Lützner H. and Bombach K., 2000. From Cadomian subduction to Early Palaeozoic rifting: the evolution of Saxo-Thuringia at the margin of Gondwana in the light of single zircon geochronology and basin development (Central European Variscides, Germany). In: Franke W, Haak W, Oncken O. and Tanner D. (Eds), Orogenic Processes: Quantification and Modelling in the Variscan Belt. Geol. Soc. London Spec. Publ., 179, 131–153.Google Scholar
  25. Majdanski M., Grad M. and Guterch A., 2006. 2-D seismic tomographic and ray tracing modelling of the crustal structure across the Sudetes Mountains basing on SUDETES 2003 experiment data. Tectonophysics, 413, 249–269.CrossRefGoogle Scholar
  26. Majdanski M., Kozlovskaya E. and Grad M., 2007. 3D structure of the Earth’s crust beneath the northern part of the Bohemian Massif. Tectonophysics, 437, 17–36.CrossRefGoogle Scholar
  27. Málek J., Horálek J. and Jánský J., 2005. One-dimensional qP-wave velocity model of the upper crust for the west Bohemian/Vogtland Earthquake swarm region. Stud. Geophys. Geod., 49, 501–524.CrossRefGoogle Scholar
  28. Martin, M., Ritter, J.R.R. and CALIXTO working group, 2005. High-resolution teleseismic bodywave tomography beneath SE Romania — I. Implications for three-dimensional versus onedimensional crustal correction strategies with a new crustal velocity model. Geophys. J. Int., 162, 448–460p.Google Scholar
  29. Matte P., Maluski H., Rajlich P. and Franke W., 1990. Terrane boundaries in the Bohemian Massif — result of large-scale Variscan shearing. Tectonophysics, 177, 151–170.CrossRefGoogle Scholar
  30. McCann T., 2008. Geology of the Central Europe. Geological Society, London, U.K.Google Scholar
  31. Neunhöfer H., Marillier F. and Panza G.F., 1981. Crust and upper mantle structure in the Bohemian Massif from the dispersion of Rayleigh waves. Gerlands Beitr. Geofyzik, 90, 514–520.Google Scholar
  32. Neunhöfer H., Plešinger A. and Kracke D., 1983. Crust and upper mantle structure between Moxa and Kasperske Hory from Rayleigh waves. Gerlands Beitr. Geofyzik, 92, 284–290.Google Scholar
  33. Novotný O. and Urban L., 1988. Seismic models of the Bohemian Massif and of some adjacent regions derived from deep seismic soundings and surface wave investigations: a review. In: Procházková D. (Ed.), Induced Seismicity and Associated Phenomena. Geophys. Inst. of the Czechosl. Acad. Sci., Prague, Czech Rep., 227–249.Google Scholar
  34. Novotný O., Proskuryakova T.S. and Shilov A.V., 1995. Dispersion of Rayleigh waves along the Prague-Warsaw profile. Stud. Geophys. Geod., 39, 138–147.CrossRefGoogle Scholar
  35. Novotný O., Grad M., Lund C.-E. and Urban L., 1997. Verification of the lithospheric structure along profile Uppsala-Prague using surface waves dispersion. Stud. Gephys. Geod., 41, 15–28.CrossRefGoogle Scholar
  36. Patočka F. and Štorch P., 2004. Evolution of geochemistry and depositional settings of Early Paleozoic siliciclastics of the Barrandian (Teplá-Barrandian unit, Bohemian Massif, Czech Republic). Int. J. Earth Sci., 93, 728–741.CrossRefGoogle Scholar
  37. Pharaoh T.C., 1999. Palaeozoic terranes and their lithospheric boundaries within the Trans-European Suture Zone (TESZ): a review. Tectonophysics, 314, 17–41.CrossRefGoogle Scholar
  38. Plomerová J., Achauer U., Babuška V. and Granet M., 2003. BOHEMA 2001–2003. Passive seismic experiment to study lithosphere-asthenosphere system in the western part of the Bohemian Massif. Stud. Geophys. Geod., 47, 691–701.CrossRefGoogle Scholar
  39. Plomerová J., Vecsey L., Babuška V., Granet M. and Achauer U., 2005. Passive seismic experiment MOSAIC — a pilot study of mantle lithosphere anisotropy of the Bohemian Massif. Stud. Geophys. Geod., 49, 541–560.CrossRefGoogle Scholar
  40. Plomerová J., Vecsey L. and Babuška V., 2011. Mapping seismic anisotropy of the lithospheric mantle beneath the northern and eastern Bohemian Massif (central Europe). Tectonophysics, DOI: 10.1016/j.tecto.2011.08.011 (in press).Google Scholar
  41. RůŽek B., Hrubcová P., Novotný M., Špičák A. and Karousová O., 2007. Inversion of travel times obtained during active seismic refraction experiment CELEBRATION 2000, ALP 2002 and SUDETES 2003. Stud. Geophys. Geod., 51, 141–164.CrossRefGoogle Scholar
  42. RůŽek B., Holub K. and Rušajová J., 2011. Three-dimensional crustal model of the Moravo-Silesian region obtained by seismic tomography. Stud. Geophys. Geod., 55, 87–107.CrossRefGoogle Scholar
  43. Sandoval S., Kissling E., Ansorge A. and SVEKALAPKO Seismic Tomography Working Group, 2003. High-resolution body wave tomography beneath the SVEKALAPKO array: I. A priori three dimentional crustal model and associated traveltime effects on teleseismic tomographic wave fronts. Geophys. J. Int., 153, 75–87.CrossRefGoogle Scholar
  44. Steck L.K. and Prothero W.A., 1991. A 3-D ray-tracer for teleseismic body-wave arrival-times. Bull. Seismol. Soc. Amer., 81, 1332–1339.Google Scholar
  45. Tesauro M., Kaban M.K. and Cloetingh S., 2008. EuCRUST-07: A new reference model for the European crust. Geophys. Res. Lett., 35, L05313, DOI: 10.1029/2007GL032244.CrossRefGoogle Scholar
  46. Vrána S., 1997. Geology and petrology of the Moldanubian Zone. In: Vrána S. and Štědrá V. (Eds.), Geological Model of Western Bohemia Related to the KTB Borehole in Germany. J. Geol. Sci. (Prague), 47, 109–123.Google Scholar
  47. Waldhauser F., Kissling E., Ansorge J. and Müller S., 1998. Three-dimensional interface modeling with two-dimensional seismic data: the Alpine crust-mantle boundary. Geophys. J. Int., 135, 264–278.CrossRefGoogle Scholar
  48. Waldhauser F., Lippitch R., Kissling E. and Ansorge J., 2002. High-resolution tomography of the upper mantle structure using a priori three-dimensional crustal model. Geophys. J. Int., 150, 403–414.CrossRefGoogle Scholar
  49. Wendt J.I., Kröner A., Fiala J. and Todt W., 1993. Evidence from zircon dating for existence of approximately 2.1 Ga old crystalline basement in southern Bohemia, Czech Republic. Geol. Rundsch., 82, 42–50.CrossRefGoogle Scholar
  50. Wessel P. and Smith H.F., 1995. New version of Generic Mapping Tools released. EOS Trans. AGU, 76, 329.CrossRefGoogle Scholar
  51. Wielandt E., Sigg A., Plešinger A. and Horálek J., 1987. Deep structure of the Bohemian Massif from phase velocities of the Rayleigh and Love waves. Stud. Geophys. Geod., 31, 1–7.CrossRefGoogle Scholar
  52. Wilde-Piórko M., Saul J. and Grad M., 2005. Differences in the crustal and uppermost mantle structure of the Bohemian Massif from teleseismic receiver functions. Stud. Geophys. Geod., 49, 85–107.CrossRefGoogle Scholar
  53. Wilde-Piórko M., Geissler W.H., Plomerová J., Grad M., Babuška V., Brückl E., Cyziene J., Czuba W., England R., Gaczynski E., Gazdová R., Gregersen S., Guterch A., Hanka W., Hegedues E., Heuer B., Jedlička P., Lazauskiene J., Keller G.R., Kind R., Klinge K., Kolínský P., Komminaho K., Kozlovskaya E., Krueger F., Larsen T., Majdanski M., Málek J., Motuza G., Novotný O., Pietrasiak R., Plenefisch Th., RůŽek B., Sliaupa S., Sroda P., Swieczak M., Tiira T., Voss P. and Wiejacz P., 2008. PASSEQ 2006–2008: Passive seismic experiment in Trans-European Suture Zone. Stud. Geophys. Geod., 52, 439–448.CrossRefGoogle Scholar
  54. Zulauf G., Dörr W., Fiala J. and Vejnar Z., 1997. Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol. Rundsch., 86, 571–584.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2012

Authors and Affiliations

  • Hana Karousová
    • 1
  • Jaroslava Plomerová
    • 1
  • Vladislav Babuška
    • 1
  1. 1.Institute of GeophysicsAcad. Sci. Czech RepublicPraha 4Czech Republic

Personalised recommendations