Advertisement

Studia Geophysica et Geodaetica

, Volume 54, Issue 4, pp 633–650 | Cite as

Magnetic studies and scanning electron microscopy — X-ray energy dispersive spectroscopy analyses of road sediments, soils and vehicle-derived emissions

  • Marcos A. E. ChaparroEmail author
  • Débora C. Marié
  • Claudia S.G. Gogorza
  • Ana Navas
  • Ana M. Sinito
Article

Abstract

Human health and environmental problems related to particulate matter emission from vehicles has become a topic of research interest in recent years. These airborne particles can not only be directly inhaled, but are also present as suspended and deposited particles on paved areas and roadside soils. Here we report on magnetic studies, scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) and chemical analyses of vehicle-derived particles collected from both primary sources and as deposited particles on roads and soils. Preliminary results, recently published by the authors, have revealed that the magnetic signal of such particles is controlled by a magnetite-like phase with magnetic grain size ranging between 0.1 µm and 5 µm. An enrichment of some trace elements: Ba, Cr, Cu, Zn and Pb was also found. In this study we focus on SEM and EDS complementary studies of magnetic extracts. SEM observations showed small individual particles or spherulites, small aggregates in the form of chains or clusters, large aggregates of spherules, flake-like bodies, fibre-like particles, sheet-like particles, irregular debris and large particle agglomerates, i.e. a wide variety of shapes. Grain size distribution is also in agreement with magnetic grain size estimations. Additionally the following elements: C, O, Na, Mg, Al, Si, S, K, Ca, V, Ba, Ti, Cr, Mn, Fe, Cu, Zn and Pb were detected by EDS analysis.

Keywords

atmospheric pollution diesel/gas soot magnetic proxies PM vehicle emissions wear particles 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdul-Razzaq W. and Gautam M., 2001. Discovery of magnetite in the exhausted material from a diesel engine. Appl. Phys. Lett., 78, 2018–2019.CrossRefGoogle Scholar
  2. Amereih S., Meisel T., Scholger R. and Wegscheider W., 2005. Antimony speciation in soil samples along two Austrian motorways by HPLC-ID-ICP-MS. J. Environ. Monit., 7, 1200–1206.CrossRefGoogle Scholar
  3. Berube K.A., Jones T.P., Winters C., Morgan A.J. and Richards R.J., 1999. Physicochemical characterisation of diesel exhaust particles: Factor for assessing biological activity. Atmos. Environ., 33, 1599–1614.CrossRefGoogle Scholar
  4. Chan D. and Stachowiak G.W., 2004. Review of automotive brake friction materials. Proc. Instn. Mech. Engrs., 218, Part D: J. Automobile Engineering, 953–966 (http://www.aeplus.com/Journals/Materials%20-%20Review%20of%20automotive%20brake%20friction%20materials.pdf).CrossRefGoogle Scholar
  5. Chaparro M.A.E., Bidegain J.C., Sinito A.M., Gogorza C.S.G. and Jurado S., 2004. Magnetic studies applied to different environments (soils and stream-sediments) from a relatively polluted area in Buenos Aires Province, Argentina. Environ. Geol., 45, 654–664.CrossRefGoogle Scholar
  6. Flanders P.J., 1994. Collection, measurement, and analysis of airborne magnetic particulates from pollution in the environment. J. Appl. Phys., 75, 5931–5936.CrossRefGoogle Scholar
  7. Geller M.D., Ntziachristos L., Mamakos A., Samaras Z., Schmitz D.A., Froines J.R. and Sioutas C., 2006. Physicochemical and redox characteristics of particulate matter (PM) emitted from gasoline and diesel passenger cars. Atmos. Environ., 40, 6988–7004.CrossRefGoogle Scholar
  8. Hilger I., Fruhauf S., Linss W., Hiergeist R., Andra W., Hergt R. and Kaiser W., 2003. Cytotoxicity of selected magnetic fluids on human adenocarcinoma cells. J. Magn. Magn. Mater., 261, 7–12.CrossRefGoogle Scholar
  9. Huhn G., Schulz H., Staerk H.J., Toelle R. and Scheuermann G., 1995. Evaluation of regional heavy metal deposition by multivariate analysis of element contents in pine tree barks. Water Air Soil Pollut., 84, 367–383.CrossRefGoogle Scholar
  10. Kasper M., Sattler K., Siegmann K., Matter U. and Siegmann H.C., 1999. The influence of fuel additives on the formation of carbon during combustion. J. Aerosol Sci., 30, 217–225.CrossRefGoogle Scholar
  11. Kim W., Doh S.-J., Park Y.-H. and Yun S.-T., 2007. Two-year magnetic monitoring in conjunction with geochemical and electron microscopic data of roadside dust in Seoul, Korea. Atmos. Environ., 41, 7627–7641.CrossRefGoogle Scholar
  12. Knox E.G., 2006. Roads, railways and childhood cancers. J. Epidemiol. Community Health, 60, 136–141.CrossRefGoogle Scholar
  13. Knutsen S., Shavlik D., Chen L.H., Beeson W.L., Ghamsary M. and Petersen F., 2004. The association between ambient particulate air pollution levels and risk of cardiopulmonary and all-cause mortality during 22 years follow-up of a non-smoking cohort. Results from the AHSMOG study. Epidemiology, 15, S45.CrossRefGoogle Scholar
  14. Kirschvink J.L., Kobayashi-Kirschvink A. and Woodford B.J., 1992. Magnetite biomineralization in the human brain. Proc. Natl. Acad. Sci. USA, 89, 7683.CrossRefGoogle Scholar
  15. Lavado R.S., Zubillaga M.S., Alvarez R. and Taboada M.A., 2004. Baseline levels of potentially 7 toxic elements in Pampas soils. Soil. Sediment. Contam., 13, 427–437Google Scholar
  16. Lim M.C.H., Ayodo G.A., Morawska L., Ristovski Z.D. and Jayaratne E.R., 2007. The effects of fuel characteristics and engine operating conditions on the elemental composition of emissions from duty diesel buses. Fuel, 86, 1831–1839.CrossRefGoogle Scholar
  17. Lin C.-C., Chen S.-J. and Huang K.L., 2005. Characteristics of metals in nano/ultrafine/fine/coarse particles collected beside a heavily trafficked road. Environ. Sci. Technol., 39, 8113–8122.CrossRefGoogle Scholar
  18. Lu S.-G., Bai S.-Q., Cai J.-B. and Xu C., 2005. Magnetic properties and heavy metal contents of automobile emission particulates. J. Zhejiang Univ. Sci., 6B(8), 731–735.CrossRefGoogle Scholar
  19. Maher B.A., Moore C. and Matzka J., 2008. Spatial variation in vehicle-derived metal pollution identified by magnetic and elemental analysis of roadside tree leaves. Atmos. Environ., 42, 364–373.CrossRefGoogle Scholar
  20. Marié D.C., Chaparro M.A.E., Gogorza C.S.G., Navas A. and Sinito A.M., 2010. Vehicle-derived emissions and pollution on the road Autovia 2 investigated by rock-magnetic parameters: a case of study from Argentina. Stud. Geophys. Geod., 54, 135–152.CrossRefGoogle Scholar
  21. Mosleh M., Blau P.J. and Dumitrescu D., 2004. Characteristics and morphology of wear particles from laboratory testing of disk brake materials. Wear, 256, 1128–1134.CrossRefGoogle Scholar
  22. Navas A. and Machín J., 2002. Spatial distribution of heavy metals and arsenic in soils of Aragón (NE Spain): controlling factors and environmental implications. Appl. Geochem., 17, 961–973.CrossRefGoogle Scholar
  23. Palmgren F., Waahlin P., Kildesó J., Afshari A. and Fogh C.L., 2003. Characterisation of particle emissions from the driving car fleet and the contribution to ambient and indoor particle concentrations. Phys. Chem. Earth, 28, 327–334.Google Scholar
  24. Peters C. and Dekkers M.J., 2003. Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Phys. Chem. Earth, 28, 659–667.Google Scholar
  25. Pope C.A., Burnett R.T., Thun M.J., Calle E.E., Krewski D., Kazuhiko I. and Thurston G.D., 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Med. Assoc., 287, 1132–1141.CrossRefGoogle Scholar
  26. Pope C.A. and Dockery D.W., 2006. Health effects of fine particulate air pollution: lines that connect. J. Air Waste Manage. Assoc., 56, 709–742.Google Scholar
  27. Rizzio E., Giaveri G., Arginelli D., Gini L., Profumo A. and Gallorini M., 1999. Trace elements total content and particle sizes distribution in the air particulate matter of rural-residential area in the north Italy investigated by instrumental neutron activation analysis. Sci. Tot. Environ., 226, 47–56.CrossRefGoogle Scholar
  28. Tomlinson D.L., Wilson J.G., Harris C.R. and Jeffrey D.W., 1980. Problems in the assessment of heavy metals levels in estuaries and the formation of a pollution index. Helgol. Meeresunters., 33, 566–575.CrossRefGoogle Scholar
  29. Vouitsis E., Ntziachristos L., Pistikopoulos P., Samaras Z., Chrysikou L., Samara C., Papadimitriou C., Samaras P. and Sakellaropoulos G., 2009. An investigation on the physical, chemical and ecotoxicological characteristics of particulate matter emitted from light-duty vehicles. Environ. Pollut., 157, 2320–2327.CrossRefGoogle Scholar
  30. Wang Y.-F., Huang K.-L., Li C.-T., Mi H.-H., Luo J.-H. and Tsai P.-J., 2003. Emissions of fuel metals content from a diesel vehicle engine. Atmos. Environ., 37, 4637–4643.CrossRefGoogle Scholar
  31. Weckwerth G., 2001. Verification of traffic emitted aerosol components in the ambient air of Cologne (Germany). Atmos. Environ., 35, 5525–5536.CrossRefGoogle Scholar
  32. Yao Q., Li S.-Q., Xu H.-W., Zhuo J.-K. and Song Q., 2009. Studies on formation and control of combustion particulate matter in China: A review. Energy, 34, 1296–1309.CrossRefGoogle Scholar
  33. Zhang C., Huang B., Li Z. and Liu H., 2006. Magnetic properties of highroad-side pine tree leaves in Beijing and their environmental significance. Chinese Sci. Bull., 51(24), 3041–3052.CrossRefGoogle Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2010

Authors and Affiliations

  • Marcos A. E. Chaparro
    • 1
    Email author
  • Débora C. Marié
    • 1
    • 2
  • Claudia S.G. Gogorza
    • 1
  • Ana Navas
    • 3
  • Ana M. Sinito
    • 1
  1. 1.Instituto de Física Arroyo Seco (UNCPBA)-CONICETTandilArgentina
  2. 2.Universidad Nacional de Mar del Plata (UNMdP)Mar del PlataArgentina
  3. 3.Estación Experimental de Aula DeiCSICZaragozaSpain

Personalised recommendations