Studia Geophysica et Geodaetica

, Volume 54, Issue 4, pp 575–593 | Cite as

Magnetic properties and Archeointensity of Earth’s magnetic field recovered from El Opeño, earliest funeral architecture known in Western Mesoamerica

  • Modesto Pineda Duran
  • Avto GoguitchaichviliEmail author
  • Juan Morales
  • Bertha Aguilar Reyes
  • Luis M. Alva Valdivia
  • Arturo Oliveros-Morales
  • Manuel Calvo-Rathert
  • Tomas Gonzalez Moran
  • Jasinto Robles-Camacho


Despite of the impressive cultural heritage and abundant archaeological sites, absolute geomagnetic intensity data from Mesoamerica are still sparse. Archeointensity determinations using the Coe variant of the Thellier and Thellier method have been carried out on some selected pottery fragments from the El Opeño archeological site which has the earliest funeral architecture known in western Mesoamerica. The El Opeño chronology is supported by six C14 datings performed on carbon-bearing materials. Detailed rock magnetic experiments including susceptibility vs. temperature curves, hysteresis cycles and thermal demagnetization procedures were carried out in order to estimate the magnetic carriers and their stability. Cooling rate and anisotropy remanence corrected intensity values range from 25.0 ± 2.3 to 40.2 ± 3.0 μT and corresponding virtual axial dipole moments (VADM) range from 5.6 ± 0.5 to 8.9 ± 0.7 × 1022 Am2. In addition, we present here a new compilation and analysis of existing absolute intensity data in order to try to estimate the variation of the Earth’s magnetic field over the past three millennia. The mean archeointensity obtained in the present study agrees reasonably well with the predicted absolute intensities retrieved from the CALS7K main field model. Other available Mesoamerican data, however, differ from this model. Most of available archeointensity data from Mesoamerica agree reasonably well with the ARCH3K main field model prediction. The broad peak defined at about 50 A.D. by our data is also predicted by the CALS3k.3 main field model but slightly displaced to the right while two smaller peaks are observed on the ARCH3K curve for the same time interval. The intensity value obtained at about 200 B.C. is a clear outlier and thus its geomagnetic significance should be confirmed by further investigations.


archeointensity Mesoamerica magnetic properties El Opeño Michoacán Mexico 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitken M.J., 1964. Archaeomagnetic results: some geophysical implications. Archaeometry, 7, 4–6.Google Scholar
  2. Aiken M.J., Pesonen L.J. and Leino M., 1991. The Thellier paleointensity technique: minisamples versus standard size. J. Geomagn. Geoelectr., 43, 325–331.Google Scholar
  3. Alva-Valdivia L.M., Morales J., Goguitchaichvili A., Hatch M.P., Hernandez-Bernal M.S. and Matías M., 2010. Absolute geomagnetic intensity data from preclassic Guatemalan pottery. Phys. Earth Planet. Inter., 180, 41–51.CrossRefGoogle Scholar
  4. Bowles J., Gee J., Hildebrand H.J. and Tauxe L., 2002. Archeomagnetic intensity results from California and Ecuador: evaluation of regional data. Earth Planet. Sci. Lett., 203, 967–981.CrossRefGoogle Scholar
  5. Bucha V., Tylor R.E., Berger R. and Haury E.W., 1970. Geomagnetic intensity: changes during the past 3000 years in the western hemisphere. Science, 168, 111–114.CrossRefGoogle Scholar
  6. Chauvin A., Garcia A., Lanos P. and Laubenheimer F., 2000. Paleointensity of the geomagnetic field recovered on archaeomagnetic sites from France. Phys. Earth Planet. Inter., 120, 111–136.CrossRefGoogle Scholar
  7. Coe R.S., 1967. Paleo-intensities of the Earth’s magnetic field determined from tertiary and quaternary rocks. J. Geophys. Res., 72, 3247–3262.CrossRefGoogle Scholar
  8. Coe R.S., Grommé S. and Mankinen E.A., 1978. Geomagnetic paleointensities from radiocarbondated lava flows on Hawaii and the question of the Pacific non-dipole low. J. Geophys. Res., 83(B4), 1740–1756.CrossRefGoogle Scholar
  9. Day R., Fuller M. and Schmidt V.A., 1977. Hysteresis properties of titanomagnetites: grain-size and compositional dependence. Phys. Earth Planet. Inter., 13, 206–267.Google Scholar
  10. Donadini F., Korte M. and Constable C.G., 2009. Geomagnetic field for 0-3 ka: 1. New data sets for global modeling. Geochem. Geophys. Geosyst., 10, Q06007, DOI: 10.1029/2008GC002295.CrossRefGoogle Scholar
  11. Dunlop D.J., 2002. Theory and applications of the Day plot (Mrs/Ms versus Hcr/Hc). Theorical curves and test using titanomagnetite data. J. Geophys Res., 107(B3), 1029–2001.Google Scholar
  12. Eighmy J.L. and Sternberg R.S. (Eds.), 1990. Archaeomagnetic Dating. University of Arizona Press, Tucson.Google Scholar
  13. Fox J.M.W. and Aitken M.J., 1980. Cooling rate dependence of the thermoremanent magnetization. Nature, 283, 462–463.CrossRefGoogle Scholar
  14. Gallet Y., Genevey A., Le Goff M., Warmé N., Gran-Amorich J. and Lefevre A., 2009. On the use of archeology in geomagnetism, and vice-versa: recent developments in Archeomagnetism. C. R. Phys., 10, 630–648.CrossRefGoogle Scholar
  15. Genevey A. and Gallet Y., 2002. Intensity of the geomagnetic field in western Europe over the past 2000 years: New data from ancient French pottery. J. Geophys. Res., 107(B11), 2285, DOI: 10.1029/2001JB000701.CrossRefGoogle Scholar
  16. Genevey A. and Gallet Y., 2003. Eight thousand years of geomagnetic field intensity variations in the eastern Mediterranean. J. Geophys. Res., 108(B5), 2228, DOI: 10.1029/2001JB001612.CrossRefGoogle Scholar
  17. Genevey A., Gallet Y., Rosen J. and Le Goff M., 2009. Evidence for rapid geomagnetic field intensity variations in Western Europe over the past 800 years from new archeointensity French data. Earth Planet. Sci. Lett., 284, 132–143.CrossRefGoogle Scholar
  18. Gómez-Paccard M., Chauvin A., Lanos P., Thiriot J. and Jimenez-Castillo P., 2006. Archeomagnetic study of seven contemporaneous kilns from Murcia (Spain). Phys. Earth Planet. Inter., 157, 16–32.CrossRefGoogle Scholar
  19. Harbottle G., 1975. Activations analysis study of ceramics from the Capacha (Colima) and Opeño (Michoacán) phases of west Mexico. American Antiquity, 40(4), 45–458.CrossRefGoogle Scholar
  20. Korte M. and Constable C.G., 2005. Continuous geomagnetic field models for the past 7 millenia: 2. CALS7K. Geochem. Geophys. Geosyst., 6, Q02H16, DOI: 10.1029/2004GC000801.CrossRefGoogle Scholar
  21. Korte M., Donadini F. and Constable C.G., 2009. Geomagnetic field for 0–3 ka: 2. A new series of time-varying global models. Geochem. Geophys. Geosyst., 10, Q06008, DOI: 10.1029/2008GC002297.CrossRefGoogle Scholar
  22. Kovacheva M., Buyadzev Y., Kostadinova-Avramova N. and Donadini F., 2009. Updated archeomagnetic data set of the past 8 millennia from the Sofia laboratory, Bulgaria. Geochem. Geophys. Geosys., 10, Q05002, DOI: 10.1029/2008GC002347.CrossRefGoogle Scholar
  23. López-Tellez J.M., Aguilar-Reyes B., Morales J., Goguitchaichvili A., Calvo-Rather M. and Urrutia-Fucugauchi J., 2008. Magnetic characteristics and archeointensity determination on some Mesoamerican pre-Columbian potteries: case study of Quiahuiztlan archeological site (Veracruz, Gulf of Mexico, 900-1521 A.D.). Geofísica Internacional, 47(4), 329–340.Google Scholar
  24. McCabe C., Jackson M. and Ellwood B., 1985. Magnetic anisotropy in the Trenton limestone: results of a new technique, anisotropy of anhysteric susceptibility. Geophys. Res. Lett., 12, 33–336.CrossRefGoogle Scholar
  25. McClelland-Brown E., 1984. Experiments on TRM intensity dependence on cooling rate. Geophys. Res. Lett., 11, 205–208.CrossRefGoogle Scholar
  26. Morales J., Goguitchaichvili A., Acosta G., González T., Alva-Valdivia L., Robles-Camacho J. and Hernández-Bernal S., 2009. Magnetic properties and archeointensity determination on pre-Columbian pottery from Chiapas, Mesoamerica. Earth Planets Space, 61, 8–91.Google Scholar
  27. Nagata T., Kobayashi K. and Schwarz E.J., 1965. Archeomagnetic intensity studies of South and Central America. J. Geomagn. Geoelectr., 17, 399–405.Google Scholar
  28. Noguera E., 1942. Exploraciones en El Opeño, Michoacán. Memorias, XXVII. Congreso de Americanistas, 1, 574–586. INAH, México (in Spanish).Google Scholar
  29. Oliveros, 1974. Nuevas exploraciones en: El Opeño, Michoacán. In: Bell B. (Ed.), The Archaeology of West Mexico, 182–201. Ajijic, Jalisco. México (in Spanish).Google Scholar
  30. Oliveros, 1988. Juego de pelota entre las ofrendas del Opeño, Michoacán. Homenaje a Eduardo Noguera, 182–201. Instituto de Investigaciones Antropológicas, UNAM, México (in Spanish).Google Scholar
  31. Oliveros, 1989. Las tumbas más antiguas de Michoacán. Historia General de Michoacán. Época Prehispánica. Capt. I, 12–234. Instituto Michoacano de Cultura, Gobierno del estado de Michoacán, Morelia, Michoacán, México (in Spanish).Google Scholar
  32. Oliveros, 1992. Apuntes sobre orígenes y desarrollo del juego de pelota. El Juego de Pelota en Mesoamérica. Raíces y Supervivencias. Siglo XXI, 39–51. Difocur-Sinaloa, México (in Spanish).Google Scholar
  33. Oliveros Morales J.A. and de los Ríos M., 1993. La cronología en El Opeño, Michoacán: Nuevos fechamientos por radiocarbono. Arqueología, No.9–10, 45–48. Coordinación Nacional de Arqueología, 2a. Época. INAH, México (in Spanish).Google Scholar
  34. Oliveros, 2004. Hacedores de Tumbas en El Opeño, Jacona, Michoacán. El Colegio de Michoacán y El H. Ayuntamiento de Jacona, Michoacán, México (in Spanish).Google Scholar
  35. Rada M., Costanzo-Álvarez V., Aldana M. and Campos C., 2008. Rock magnetic and petrographic characterization of prehistoric Amerindian ceramics from the Dos Mosquises Island (Los Roques, Venezuela). Interciencia, 33(2), 129–134.Google Scholar
  36. Rodriguez-Ceja M., Goguitchaichvili A., Chauvin A., Morales J., Ostroumov M., Manzanilla L.R., Aguilar-Reyes B. and Urrutia-Fucugauchi J., 2009. An integrated magnetic and raman spectroscopy study on some pre-columbian potteries from Cuanalan (a formative village in the Valley of Teotihuacan) in Mesoamerica. J. Geophys. Res., 114, B04103, DOI: 10.1029/2008JB006106.CrossRefGoogle Scholar
  37. Schnepp E. and Lanos P., 2005. Archaeomagnetic secular variation in Germany during the past 2500 years. Geophys. J. Int., 163, 479–490.CrossRefGoogle Scholar
  38. Sternberg R.S., 2008. Archaeomagnetism in archaeometry — a semi centenioal review. Archaeometry, 50, 98–998.CrossRefGoogle Scholar
  39. Sternberg R.S., 1989. Archaeomagnetic paleointensity in the American Southwest during the past 2000 years. Phys. Earth Planet. Inter., 56, 1–17.CrossRefGoogle Scholar
  40. Tarling D.H., 1983. Palaeomagnetism: Principles in Geology, Geophysics and Archaeology. Chapman and Hall, London, U.K.Google Scholar
  41. Tauxe L., Mullender T.A.T. and Pick T., 1996. Pot-bellies, wasp-waists and superparamagnetism in magnetic hysteresis. J. Geophys. Res., 95, 12337–12350.CrossRefGoogle Scholar
  42. Thellier E. and Thellier O., 1959. Sur l’intensité du champ magnétique terrestre dans le passé historique et géologique. Ann. Géophysique, 15, 285–376 (in French).Google Scholar
  43. Wolfman D., 1973. A Re-Evaluation of Mesoamerican Chronology: AD 1 — 1200. PhD Thesis, Department of Anthropology, University of Colorado, Boulder.Google Scholar

Copyright information

© Institute of Geophysics of the ASCR, v.v.i 2010

Authors and Affiliations

  • Modesto Pineda Duran
    • 1
  • Avto Goguitchaichvili
    • 1
    Email author
  • Juan Morales
    • 1
  • Bertha Aguilar Reyes
    • 1
  • Luis M. Alva Valdivia
    • 2
  • Arturo Oliveros-Morales
    • 3
  • Manuel Calvo-Rathert
    • 4
  • Tomas Gonzalez Moran
    • 5
  • Jasinto Robles-Camacho
    • 3
  1. 1.Laboratorio Interinstitucional de Magnetismo Natural, Instituto de Geofísica — Sede MichoacánUniversidad Nacional Autónoma de México, Campus MoreliaMoreliaMexico
  2. 2.Laboratorio de Paleomagnetismo, Instituto de Geofisica, Universidad Nacional Autónoma de MéxicoCiudad Universitaria, S/NMéxico, DFMexico
  3. 3.Instituto Nacional de Antropología e Historia (INAH)MichoacánMexico
  4. 4.Laboratorio de Paleomagnetismo, Departamento de Física, Escuela Politécnica SuperiorUniversidad de BurgosBurgosSpain
  5. 5.Deptartamento de Recursos Naturales, Instituto de GeofisicaUniversidad Nacional Autónoma de México, Ciudad Universitaria, S/NMéxico, DFMexico

Personalised recommendations